
Distributed Objects
and Java RMI basics

Local Objects vs. Distributed Objects

• Local objects are those whose methods can only be
invoked by a local process, a process that runs on
the same computer on which the object exists

• A distributed (remote) object is one whose methods
can be invoked by a remote process, a process
running on a computer connected via a network to
the computer on which the object exists

• Network resources are represented by distributed objects
• To request service from a network resource, a process

invokes one of its operations or methods, passing data as
parameters to the method

• The method is executed on the remote host, and the
response is sent back to the requesting process as a
return value

The Distributed Object Paradigm

client process

data element

method

mehtod

data elementHost A

Host B

method call

Distributed object

The Distributed Object Paradigm - 2

• A process running in host A makes a method call to a
distributed object residing on host B, passing the
parameters, if any

• The method call invokes an action performed by the
method on host A, and a return value, if any, is passed
from host A to host B

• A process which makes use of a distributed object is
said to be a client process of that object, and the
methods of the object are called remote methods (as
opposed to local methods, or methods belonging to a
local object)

An Archetypal
Distributed Objects System

Server Proxy

Runtime Support

Network Support

Object Server

Client Proxy

Runtime Support

Network Support

Object Client

Object Registry

Logical Flow

Physical Flow

Distributed Object System

• A distributed object is provided, or exported, by a
process, here called the object server

• A facility, here called an object registry, must be
present in the system architecture for distributed
objects to be registered

• A reference is a “handle” for an object; it is a
representation through which an object can be
located in the machine where the object resides

• To access a distributed object, a process – an object
client – looks up the object registry for a reference to
the object. This reference is used by the object
client to make calls to the methods

Distributed Object System - 2

• Logically, the object client makes a call directly to a
remote method

• Actually, the call is handled by a software
component, called a client proxy, which interacts
which the software on the client host that provides
the runtime support for the distributed object system

• The runtime support is responsible for the
interprocess communication needed to transmit the
call to the remote host, including the marshalling of
the argument data that needs to be transmitted to
the remote object

Distributed Object System - 3
• A similar architecture is required on the server side, where

the runtime support for the distributed object system
handles the receiving of messages and the unmarshalling
of data, and forwards the call to a software component
called the server proxy

• The server proxy interfaces with the distributed object to
invoke the method call locally, passing in the
unmarshalled data for the arguments

• The method call results in the performance of some tasks
on the server host

• The outcome of the execution of the method, including the
marshalled data for the return value, is forwarded by the
server proxy to the client proxy, via the runtime support
and network support on both sides

Distributed Object Mechanisms

• A large number of mechanisms based on the
paradigm are available
• Java Remote Method Invocation (RMI)
• Common Object Request Broker Architecture

(CORBA) systems
• Distributed Component Object Model (DCOM)
• Mechanisms that support the Simple Object

Access Protocol (SOAP)

Remote Procedure Call (RPC)

• Remote Method Invocation has its origin in a paradigm
called Remote Procedure Call

• In the remote procedure call model, a procedure call is
made by one process to another, with data passed as
arguments

• Upon receiving a call, the actions encoded in the
procedure are executed, the caller is notified of the
completion of the call, and a return value, if any, is
transmitted from the called to the caller

RPC: Remote Computation

RPC: Remote Computation - 2

RPC: Remote Computation - 3

Remote Method Invocation

• RMI is an object-oriented implementation of the Remote
Procedure Call model; it is an API for Java programs only

• Using RMI, an object server exports a remote object and
registers it with a directory service. The object provides
remote methods, which can be invoked in client
programs

• Syntactically:
• A remote object is declared with a remote interface
• The remote interface is implemented by the remote

object
• An object client accesses the object by invoking the

remote methods associated with the objects

The Java RMI Architecture

stub

remote reference layer

transport layer

skeleton

remote reference layer

transport layer

logical data path

physical data path

supports the interface with
the application program

maps the platform-independent stub/skeleton
layer to the platform-dependent transport
layer; carries out remote reference protocols

sets up, maintains, and shuts down
connections; and carries out the
transport protocol

object
client

object
server

Directory service

Object Registry

• The RMI API allows a number of directory services to be
used for registering a distributed object

• We will use a simple directory service called the RMI
registry, rmiregistry, which is provided with the Java
Software Development Kit (SDK)

• The RMI Registry is a service whose server, when active,
runs on the object server’s host machine, by convention
and by default on the TCP port 1099

• An alternative naming/directory service is Java Naming
and Directory Interface (JNDI), which is more general than
the RMI registry, in the sense that it can be used by
applications that do not use the RMI API

The interaction between the stub
and the skeleton

skeleton

marshal parameters;
send Request

unmarshal parameters
Invoke method

Remote
Method

execute code
and return a
valuereceive return value

marshal reply
send reply

unmarshall reply;
return value

time

(based on http://java.sun.com.marketing/collateral/javarim.html)

stub

The API for the Java RMI

• The Remote Interface
• The Server-side Software

• The Remote Interface Implementation
• Stub Generation
• The Object Server

• The Client-side Software

The Remote Interface

• A Java remote interface is an interface that inherits
from the Java Remote interface

• Other than the Remote extension and the Remote
exception that must be specified with each method
signature, a remote interface has the same syntax as
a regular or local Java interface

A sample remote interface

import java.rmi.*
public interface SomeInterface extends Remote {

public String someMethod1()
throws java.rmi.RemoteException;

public int someMethod2(float f) throws
java.rmi.RemoteException;

[signature of other remote methods may follow]
}

A sample remote interface - 2

• The java.rmi.RemoteException must be listed in the
throw clause of each method signature

• This exception is raised when errors occur during the
processing of a remote method call, and the
exception is required to be caught in the method
caller’s program

• Causes of such exceptions include exceptions that
may occur during interprocess communications, such
as access failures and connection failures, as well as
problems unique to remote method invocations,
including errors resulting from the object, the stub, or
the skeleton not being found

The Server-side Software

• The object server provides the methods of the
interface to a distributed object

• Each object server must
• implement each of the remote methods specified

in the interface
• register an object which contains the

implementation with a directory service

The Remote Interface Implementation

import java.rmi.*;
import java.rmi.server.*;

public class SomeImpl extends UnicastRemoteObject
implements SomeInterface {

public SomeImpl() throws RemoteException {
super();

}
public String someMethod1() throws RemoteException {

// code to be supplied
}
public int someMethod2(float f)

throws RemoteException {
// code to be supplied

}
}

Stub Generation

• In RMI, each distributed object requires a proxy for the
object server and the object client

• This proxy is generated from the implementation of a
remote interface using a tool provided with the Java SDK:
the RMI compiler rmic

• rmic –v1.2 SomeImpl

• As a result of the compilation, the proxy class will be
generated, prefixed with the implementation class name:

• SomeImpl_Stub.class

The Object Server
The object server class instantiates and exports an object
implementing the remote interface

import java.rmi.*;

public class SomeServer {
public static void main(String args[]) {
[…]
try{
SomeImpl exportedObj = new SomeImpl();
Naming.rebind(“some”, exportedObj);

System.out.println("Some Server ready.");
}

[…]
}

}

The Object Server - 2

• The Naming class provides methods for storing and
obtaining references from the registry

• The rebind method allows an object reference to be
stored in the registry with a URL

• The rebind method will overwrite any reference in the
registry bound with the given reference name

• if the overwriting is not desirable, there is also a bind method

• The host name should be the name of the server, or
simply localhost. The reference name is a name of your
choice, and should be unique in the registry

The RMI Registry

• The RMI Registry is required to run on the host of the
server which exports remote objects

• It can be activated by hand using the rmiregistry
utility as follows:

rmiregistry <port number>

where the port number is a TCP port number
• If no port number is specified, port number 1099 is

assumed
• The registry will run continuously until it is shut down

(via CTRL-C, for example)

The Object Server - 3

• When an object server is executed, the exporting of the
distributed object causes the server process to begin to
listen and wait for clients to connect and request services of
the object

• An RMI object is a concurrent server: each request from an
object client is served using a separate thread

• Note that if a client process invokes multiple remote method
calls, these calls will be executed concurrently unless
provisions are made in the client process to synchronize the
calls

The Client-side Software

• The program for the client class is like any other Java
class

• The syntax needed for RMI involves
• locating the RMI Registry in the server host
• looking up the remote reference for the server object
• the reference can then be cast to the remote

interface and the remote methods invoked

The Client-side Software - 2
import java.rmi.*;

public class SomeClient {
public static void main(String args[]) {

[…]
try {
String registryURL =

"rmi://localhost:" + portNum + "/some";
SomeInterface h =
(SomeInterface)Naming.lookup(registryURL);

String result = h.someMethod1();
[…]
}
catch (Exception e) {[…]}

}
}

Invoking the Remote Method

• The syntax for the invocation of the remote methods
is the same as for local methods

• It is a common mistake to cast the object retrieved
from the registry to the interface implementation class
or the server object class

• It should be cast as the interface

The stub file for the object

• The stub file for the object, as well as the remote interface
file, must be shared with each object client as these files
are required for the client program to compile

• A copy of each file may be provided to the object client by
hand

• In addition, the Java RMI has a feature called stub
downloading which allows a stub file to be obtained by a
client dynamically

Placement of classes
for an RMI application

SomeInterface

SomeClient

SomeImpl_Stub

SomeInterface

SomeServer

SomeImpl_Stub

SomeImpl

Object Client Host Object Server Host

Local and Remote References

RMI and Sockets

• The remote method invocation can be used in lieu of the
socket API in a network application

• Some of the tradeoffs between the RMI API and the
socket API are as follows:
• The socket API is closely related to the operating

system, and hence has less execution overhead. For
applications which require high performance, this may
be a consideration

• The RMI API provides the abstraction which eases the
task of software development. Programs developed
with a higher level of abstraction are more
comprehensible and hence easier to debug

