

RMI pitfall: equals and hashCode
• To find out if two remote objects have the same contents, the call to equals

would need to contact the servers containing the objects and comparing their
contents

• That call could fail, but equals does not throw RemoteException

• The same holds for hashCode

• We must rely on the redefinitions of these two methods in RemoteObject, that
is the superclass of all remote objects and stubs

• These methods actually compare the identities

• If we redefine the methods in the remote object, this will not affect stubs, as
they are mechanically generated

RMI pitfall: clone
• clone does not throw RemoteException

• It does not make sense to clone a stub: we could simply duplicate its reference

• We may define a remoteClone method:
interface SomeInterface extends java.rmi.Remote
{ public Object remoteClone() throws RemoteException,
 cloneNotSupportedException;
 […]
}

class SomeInterfaceImpl extends UnicastRemoteObject
 implements SomeInterface
{ public Object remoteClone() throws RemoteException,
 cloneNotSupportedException
 { return clone();
 }
}

RMI pitfall: inappropriate remote parameters
• Consider a remote method with the following interface:

void paint(Graphics g) throws RemoteException

• Graphics (actually, its subclasses) interacts with native graphics code, so its
serialized version would embed machine-dependent pointers

• Graphics is not Serializable, so it cannot be sent via RMI

Dynamic class downloading in RMI
• One of the most significant capabilities of the Java platform is the ability to

dynamically download Java software from any Uniform Resource Locator
(URL) to a JVM running in a separate process, usually on a different physical
system

• The result is that a remote system can run a program, for example an applet,
which has never been installed on its disk

• For example, a JVM running from within a Web browser can download the
bytecodes for subclasses and any other classes needed by that applet

• The system on which the browser is running has most likely never run this
applet before, nor installed it on its disk

• Once all the necessary classes have been downloaded from the server, the
browser can start the execution of the applet program using the local
resources of the system on which the client browser is running

• Java RMI takes advantage of this capability to download and execute classes
on systems where those classes have never been installed on disk

• Using the RMI API any JVM, not only those in browsers, can download any
Java class file including specialized RMI stub classes, which enable the
execution of method calls on a remote server using the server system's
resources

• It could be needed to download also client-unknown subclasses of client-
known classes

• When a Java program uses a ClassLoader, that class loader needs to know
the location(s) from which it should be allowed to load classes

• Usually, a class loader is used in conjunction with an HTTP server that is
serving up compiled classes for the Java platform

• A codebase can be defined as a source, or a place, from which to load classes
into a Java virtual machine

• You can think of your CLASSPATH as a "local codebase", because it is the list
of places on disk from which you load local classes. When loading classes
from a local disk-based source, your CLASSPATH variable is consulted

How codebase is used in RMI
• Using RMI, applications can create remote objects that accept method calls

from clients in other JVMs

• In order for a client to call methods on a remote object, the client must have a
way to communicate with the remote object

• The java.rmi.server.codebase property value represents one or more URL
locations from which the stubs (and any classes needed by the stubs) can be
downloaded

• Like applets, the classes needed to execute remote method calls can be
downloaded from "file:///" URLs, but like applets, a "file:///" URL
generally requires that the client and the server reside on the same physical
host, unless the file system referred to by the URL is made available using
some other protocol, such as NFS

• Generally, the classes needed to execute remote method calls should be made
accessible from a network resource, such as an HTTP or FTP server

• Before starting the server, you need to start RMI's registry, using the
rmiregistry command

• Before you start the rmiregistry, you must make sure that the shell or
window in which you will run rmiregistry either has no CLASSPATH
environment variable set or has a CLASSPATH environment variable that does
not include the path to any classes, including the stubs for your remote object
implementation classes, that you want downloaded to clients of your remote
objects

• If you do start the rmiregistry and it can find your stub classes in
CLASSPATH (or in the starting directory) it will not remember that the loaded
stub class can be loaded from your server's code base, specified by the
java.rmi.server.codebase property when you started up your server
application

• Therefore, the rmiregistry will not convey to clients the true code base
associated with the stub class and, consequently, your clients will not be able
to locate and to load the stub class or other server-side classes

1. The remote object's codebase is specified by the remote object's server by
setting the java.rmi.server.codebase property

2. The RMI server registers a remote object, bound to a name, with the RMI
registry

3. The codebase set on the server JVM is annotated to the remote object
reference in the RMI registry

4. The RMI client requests a reference to a named remote object. The reference
(the remote object's stub instance) is what the client will use to make remote
method calls to the remote object

5. The RMI registry returns a reference (the stub instance) to the requested class

6. If the class definition for the stub instance can be found locally in the client's
CLASSPATH , which is always searched before the codebase, the client will load
the class locally

7. If the definition for the stub is not found in the client's CLASSPATH, the client
will attempt to retrieve the class definition from the remote object's codebase

8. The client requests the class definition from the codebase. The codebase the
client uses is the URL that was annotated to the stub instance when the stub
class was loaded by the registry

9. The class definition for the stub (and any other class(es) that it needs) is
downloaded to the client

10. Now the client has all the information that it needs to invoke remote
methods on the remote object

11. The stub instance acts as a proxy to the remote object that exists on the
server; so unlike the applet which uses a codebase to execute code in its local
JVM, the RMI client uses the remote object's codebase to execute code in
another, potentially remote JVM

Using codebase in RMI for more than just
stub downloading

• In addition to downloading stubs and their associated classes to clients, the
java.rmi.server.codebase property can be used to specify a location from
which any class, not only stubs, can be downloaded

• When a client makes a method call to a remote object, there are three distinct
cases that may occur, based on the data type(s) of the method argument(s)

1. In the first case, all of the method parameters (and return value) are primitive
data types, so the remote object knows how to interpret them as method
parameters, and there is no need to check its CLASSPATH or any codebase.

2. In the second case, at least one remote method parameter or the return value
is an object, for which the remote object can find the class definition locally
in its CLASSPATH

3. In the third case the remote method receives an object instance, for which
the remote object cannot find the class definition locally in its CLASSPATH.
The class of the object sent by the client is a subtype of the declared
parameter type

• Like the applet's codebase, the client-specified codebase is used to

download Remote classes, non-remote classes, and interfaces to other
JVMs

• If the codebase property is set on the client application, then that
codebase is annotated to the subtype instance when the subtype class
is loaded by the client

• If the codebase is not set on the client, the remote object will mistakenly
use its own codebase

Command-line examples
Because the remote object's codebase can refer to any URL, not just one that is
relative to a known URL, the value of the RMI codebase must be an absolute URL
to the location of the stub class and any other classes needed by the stub class

This value of the codebase property can refer to:

• The URL of a directory in which the classes are organized in package-named
sub-directories

• The URL of a JAR file in which the classes are organized in package-named
directories

• A space-delimited string containing multiple instances of JAR files and/or
directories that meet the criteria above

Note: When the codebase property value is set to the URL of a directory, the value
must be terminated by a "/"

• If the location of your downloadable classes is on an HTTP server named
"webserver", in the directory "export" (under the web root), your codebase
property setting might look like this:

 -Djava.rmi.server.codebase=http://webserver/export/

• If the location of your downloadable classes is in a JAR file named
"mystuff.jar", in the directory "public" (under the Web root), your codebase
property setting might look like this:

 -Djava.rmi.server.codebase=http://webserver/public/mystuff.jar

• If the location of your downloadable classes has been split between two JAR
files, "myStuff.jar" and "myOtherStuff.jar". If these JAR files are located on
different servers (named "webserver1" and " webserver2"), your codebase
property setting might look like this:

-Djava.rmi.server.codebase="http://webserver1/myStuff.jar
http://webserver1/myOtherStuff.jar"

Security
• The Java 2 security model is more sophisticated than the model used for JDK

1.1

• Java 2 contains enhancements for finer-grained security and requires code to
be granted specific permissions to be allowed to perform certain operations

• You need to specify a policy file

• Here is a general policy file that allows downloaded code, from any code base,
to do two things:
o Connect to or accept connections on unprivileged ports (ports greater

than 1024) on any host
o Connect to port 80 (the port for HTTP)

• Here is the code for the general policy file (client.policy):
grant {
 permission java.net.SocketPermission "*:1024-65535",
 "connect,accept";
 permission java.net.SocketPermission "*:80", "connect";
};

• You can start the client, specifying the java.security.policy property,
used to specify the policy file that contains the permissions you intend to
grant:

java -Djava.security.policy=client.policy Client

• To set the default RMI security manager:

System.setSecurityManager(new RMISecurityManager());

Client-side callbacks
• In many architectures, a server may need to make a remote call to a client

• Examples include progress feedback, time tick notifications, warnings of
problems, etc.

• To accomplish this, a client must also act as an RMI server

• There is nothing really special about this as RMI works equally well between all
computers

• It may be impractical for a client to extend java.rmi.server.UnicastRemoteObject

• In these cases, a remote object may prepare itself for remote use by calling the
static method:

 UnicastRemoteObject.exportObject(remote_object)

• To support a callback, the client must act as an RMI server

• It does this by exporting and implementing a remote interface

• Our client will define and implement the TimeMonitor interface, that is
designed to be called by a time service that supplies the current date and time

• The server cannot call back to the client until it knows where to find it

• It is the client's responsibility to register itself with the server. It does this by
using the server's registerTimeMonitor method in the TimeServer and
passes a reference to itself to the server.

• In this exercise, you will need to define the interfaces and the implementations
for both the server and the client.

NOTE: We will also use an alternative way to set up an RMI registry

import java.rmi.*;
import java.util.Date;

public interface TimeMonitor extends java.rmi.Remote
{ public void time(Date d) throws RemoteException;
}

import java.rmi.*;

public interface TimeServer extends java.rmi.Remote
{ public void registerTimeMonitor(TimeMonitor tm)
 throws RemoteException;
}

import java.util.Date;

class TimeTicker extends Thread
{ private TimeMonitor tm;

 TimeTicker(TimeMonitor tm)
 { this.tm = tm;
 }

 public void run()
 { while(true)
 try
 { sleep(2000);
 tm.time(new Date());
 }
 catch (Exception e)
 { System.out.println(e);
 }
 }
}

import java.net.*;
import java.io.*;
import java.util.Date;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.LocateRegistry;

public class TimeServerImpl implements TimeServer
{ private static TimeServerImpl tsi;

 public static void main (String[] args)
 { try
 { tsi = new TimeServerImpl();
 LocateRegistry.createRegistry(1099);
 System.out.println("Registry created");

 UnicastRemoteObject.exportObject(tsi);
 Naming.rebind("TimeServer", tsi);
 System.out.println("Bindings Finished");
 System.out.println("Waiting for Client requests");
 } [to be continued…]

 catch (Exception e)
 { System.out.println(e);
 }
 }

 public void registerTimeMonitor(TimeMonitor tm)
 { System.out.println("Client requesting a connection");

 TimeTicker tt;
 tt = new TimeTicker(tm);
 tt.start();
 System.out.println("Timer Started");
 }

} // class TimeServerImpl

import java.util.Date;
import java.net.URL;
import java.rmi.*;
import java.rmi.server.*;

public class TimeClient implements TimeMonitor
{ private TimeServer ts;

 public TimeClient()
 { try
 { System.out.println("Exporting the Client");
 UnicastRemoteObject.exportObject(this);
 ts = (TimeServer)Naming.lookup(
 "rmi://localhost:1099/TimeServer");
 ts.registerTimeMonitor(this);
 }
 catch (Exception e)
 { System.out.println(e);
 }
 }

 [to be continued…]

 public void time(Date d)
 { System.out.println(d);
 }

} //class TimeClient

public class Main
{ public static void main (String[] args)
 { new TimeClient();
 }
}

