
The Common
Object Request Broker

Architecture
(CORBA)

CORBA

CORBA is a standard architecture for
distributed objects systems
CORBA is designed to allow distributed
objects to interoperate in a
heterogenous environment, where
objects can be implemented in different
programming languages and/or
deployed on different platforms

CORBA vs. Java RMI

RMI is a proprietary facility and supports
objects written in the Java programming
langugage only
CORBA is an architecture that was
developed by the Object Management
Group (OMG), an industrial consortium

CORBA
CORBA is a very rich set of protocols
A distributed object facility which adhere
to these protocols is said to be CORBA-
compliant
the distributed objects the facility
supports can interoperate with objects
supported by other CORBA-compliant
facilities

The basic architecture

object clientnaming service

naming
lookup

stub

ORB

network

operating
system

object
implementation

skeleton

ORB

network

operating
system

logical data flow

physical data flow

CORBA object interface
A distributed object is defined using an interface
similar to the remote interface file in Java RMI
Universal language with a distinct syntax, known
as the CORBA Interface Definition Language
(IDL)
For many languages there is a standardized
mapping from CORBA IDL

Cross-language CORBA
application

object client written in Java

stub in Java generated by compiling
the CORBA object interface

ORB written in Java

object implementation written
in C++

skeleton in C++ generated by
compiling the CORBA object

interface

ORB written in C++

Inter-ORB protocols

To allow ORBs to be interoperable, the
OMG specified a protocol known as the
General Inter-ORB Protocol (GIOP), a
specification which “provides a general
framework for protocols to be built on
top of specific transport layers”
Inter-ORB Protocol (IIOP) = GIOP
applied to the TCP/IP transport layer

Inter-ORB protocols
The IIOP specification includes the following

elements:
Transport management requirements
l connection and disconnection requirements
l roles for object client and object server in making and

unmaking connections

Definition of common data representation
l a coding scheme for marshalling and unmarshalling data of

each IDL data type

Message formats

Object bus

An ORB which adheres to the specifications of the
IIOP may interoperate with any other IIOP-compliant
ORBs over the Internet
“Object bus”, where the Internet is seen as a bus
that interconnects CORBA objects

CORBA object
references

A CORBA object reference is an abstract
entity mapped to a language-specific object
reference by an ORB, in a representation
chosen by the developer of the ORB
For interoperability, OMG specifies a protocol
for the abstract CORBA object reference
object, known as the Interoperable Object
Reference (IOR) protocol

Interoperable Object
Reference (IOR)

An IOR is a string that contains encoding for
the following information:
l The type of the object
l The host where the object can be found
l The port number of the server for that object
l An object key, a string of bytes identifying the

object, used by an object server to locate the
object

CORBA Naming Service

CORBA specifies a generic directory
service. The Naming Service serves
as a directory for CORBA objects
The Naming Service allows names to
be associated with object references

CORBA Naming Service
To export a distributed object, a CORBA
object server contacts a Naming Service to
bind a symbolic name to the object
The Naming Service maintains a database of
names and the objects associated with them.
The Naming Service resolves an object name
returning a reference to the object
The API for the Naming Service is specified in
interfaces defined in IDL

CORBA Naming Service
The CORBA object naming scheme is necessarily
complex
Since the name space is universal, a standard
naming hierarchy is defined

namingcontext1

naming context1 naming context2

naming context1 naming context1

object
name1

object
namen

...
...

CORBA Naming Service

The full name of an object, including all
the associated naming contexts, is
known as a compound name

<naming context > …<naming context><object name>

Naming contexts and name bindings
are created using methods provided in
the Naming Service interface

Interoperable Naming
Service

The Interoperable Naming Service (INS) is
a URL-based naming system based on the
CORBA Naming Service
It allows applications to share a common
initial naming context and provide a URL to
access a CORBA object

CORBA Object Services
CORBA specifies services commonly needed in
distributed applications
l Naming Service
l Concurrency Service
l Event Service
l Logging Service
l Scheduling Service
l Security Service
l Trading Service: for locating a service by the type

(instead of by name)
l Time Service: a service for time-related events
l Notification Service
l Object Transaction Service

Object Adapters

distributed object
implementation

object adapter

 ORB

Object Adapter
An object adapter assists an ORB in
delivering a client request to an object
implementation
When an ORB receives a client’s request, it
locates the object adapter associated with the
object and forwards the request to the
adapter
The adapter interacts with the object
implementation’s skeleton, which performs
data marshalling and invokes the appropriate
method in the object

The Portable Object
Adapter

There are different types of CORBA
object adapters.
The Portable Object Adapter, or POA,
is a particular type of object adapter that
is defined by the CORBA specification
An object adapter that is a POA allows
an object implementation to function
with different ORBs

The Java IDL

Java IDL – Java’s
CORBA facility

IDL is part of the Java 2 Platform
The Java IDL facility includes a CORBA
Object Request Broker (ORB), an IDL-to-Java
compiler,and a subset of CORBA standard
services
Java also provides a number of CORBA-
compliant facilities, including RMI over IIOP,
which allows a CORBA application to be
written using the RMI syntax and semantics

Key Java IDL packages

org.omg.CORBA – contains interfaces
and classes providing the mapping of
the OMG CORBA APIs to the Java
programming language
org.omg.CosNaming - contains
interfaces and classes providing the
naming service for Java IDL

Java IDL tools

Java IDL provides a set of tools needed
for developing a CORBA application:
l idlj - the IDL-to-Java compiler
l orbd - a server process which provides

Naming Service and other services
l servertool – provides a command-line

interface for application programmers to
register/unregister an object, and
startup/shutdown a server

The CORBA interface

module HelloApp
{ interface Hello

{ string sayHello();
oneway void shutdown();

};
};

Compiling the IDL file
The IDL is compiled as follows:

idlj -fall Hello.idl

The –fall command option is necessary for the
compiler to generate all the files needed
If the compilation is successful, the following files
can be found in a HelloApp subdirectory:

HelloOperations.java Hello.java
HelloHelper.java HelloHolder.java
_HelloStub.java HelloPOA.java

HelloOperations.java

The file HelloOperations.java is the
Java operations interface
It is a Java interface file that is
equivalent to the CORBA IDL interface
file (Hello.idl)
You should look at this file to make sure
that the method signatures correspond
to what you expect

Hello.java

The signature interface file combines the
characteristics of the Java operations
interface (HelloOperations.java) with the
characteristics of the CORBA classes that
it extends (org.omg.CORBA.Object,
org.omg.CORBA.portable.IDLEntity)

HelloHelper.java

The Java class HelloHelper provides
auxiliary functionality needed to support a
CORBA object in the context of the Java
language
In particular, a method, narrow,allows a
CORBA object reference to be cast to its
corresponding type in Java, so that a CORBA
object may be operated on using syntax for
Java object

_HelloStub.java

The Java class _HelloStub is the stub
file, which interfaces with the client
object
It extends
org.omg.CORBA.portable.ObjectImpl
and implements the Hello.java interface

HelloPOA.java, the server
skeleton

The Java class HelloImplPOA is the
skeleton combined with the portable
object adapter

Server-side classes

On the server side, two classes need
to be provided
l The servant, HelloImpl, is the

implementation of the Hello IDL interface
l The object server, HelloServer

The servant
import org.omg.CosNaming.*;
import org.omg.CORBA.ORB;

class HelloImpl extends HelloPOA
{ private ORB orb;

public void setORB(ORB _orb)
{ orb = _orb; }

public String sayHello()
{ return "Hello world !! "; }

public void shutdown()
{ orb.shutdown(false); }

}

The server /1
import org.omg.CosNaming.*;
import org.omg.CORBA.ORB;
import org.omg.PortableServer.*;

public class HelloServer
{ public static void main(String args[])

{ try
{ ORB orb = ORB.init(args, null);

POA rootpoa = (POA)orb.resolve_initial_
references("RootPOA");

rootpoa.the_POAManager().activate();
HelloImpl helloImpl = new HelloImpl();
helloImpl.setORB(orb);
org.omg.CORBA.Object ref = rootpoa.servant_

to_reference(helloImpl);
Hello href = HelloHelper.narrow(ref);
[…]

The server /2
org.omg.CORBA.Object objRef =

orb.resolve_initial_references("NameService");
NamingContextExt ncRef =

NamingContextExtHelper.narrow(objRef);
String name = "Hello";
NameComponent path[] = ncRef.to_name(name);
ncRef.rebind(path, href);
System.out.println("HelloServer ready

and waiting ...");
orb.run();
}
catch(Exception e)
{ System.out.println(e);
}

} // main
} // class

The object client /1
The client code is responsible for:
l creating and initializing the ORB
l looking up the object using the Interoperable

Naming Service
l invoking the narrow method of the Helper object

to cast the object reference to a reference to a
Hello object implementation

l invoking remote methods using the reference

The object’s sayHello method is invoked to
receive a string, and the object’s shutdown
method is invoked to deactivate the service

import org.omg.CosNaming.*;
import org.omg.CORBA.ORB;

public class HelloClient
{ static Hello helloImpl;

public static void main(String args[])
{ try

{ ORB orb = ORB.init(args, null);
org.omg.CORBA.Object objRef =
orb.resolve_initial_references(

"NameService");
NamingContextExt ncRef =

NamingContextExtHelper.narrow(
objRef);

helloImpl = HelloHelper.narrow(
ncRef.resolve_str("Hello"));

[…]

The object client /2

System.out.println(
helloImpl.sayHello());

helloImpl.shutdown();
}
catch(Exception e)
{ System.out.println(e);
}

}
}

The object client /3

Starting the Java ORB
on the server

The Java ORB daemon orbd includes a
Naming Service

orbd -ORBInitialPort 1050
-ORBInitialHost servermachinename

Running the application

On the server
java HelloServer

–ORBInitialHost nameserverhost
-ORBInitialPort 1050

On the client
java HelloClient

-ORBInitialHost nameserverhost
-ORBInitialPort 1050

N.B.: nameserverhost is the host on which
the IDL name server is running

