
Firewall Issues
• Firewalls are inevitably encountered by any networked enterprise application that

has to operate beyond the confines of an Intranet
• Typically, firewalls block all network traffic, with the exception of those intended

for certain "well-known" ports
• Since the RMI transport layer opens dynamic socket connections between the

client and the server to facilitate communication, the traffic is typically blocked by
most firewall implementations

• A solution is provided by the RMI transport layer itself
• To get across firewalls, RMI makes use of HTTP tunneling by encapsulating the

RMI calls within an HTTP POST request

• The possible scenarios: the RMI client, the server, or both can be operating from
behind a firewall

• When the transport layer tries to establish a connection with the server, it is
blocked by the firewall. When this happens, the RMI transport layer
automatically retries by encapsulating the call data within an HTTP POST
request

• The HTTP POST header for the call is in the form
http://hostname:port

• Once the HTTP-encapsulated data is received at the server, it is automatically
decoded and dispatched by the RMI transport layer

• The reply is then sent back to client as HTTP-encapsulated data

• The following diagram shows the scenario when both the RMI client and server
are behind firewalls, or when the client proxy server can forward data only to the
well-known HTTP port 80 at the server

• In this case, the RMI transport layer uses one additional level of indirection. This
is because the client can no longer send the HTTP-encapsulated calls to
arbitrary ports as the server is also behind a firewall

• Instead, the RMI transport layer places the call inside the HTTP packets and
sends those packets to port 80 of the server

• The HTTP POST header is now in the form
http://hostname:80/cgi-bin/java-rmi?forward=<port>

• This causes the execution of the CGI script, java-rmi.cgi, which in turn
invokes a local JVM, unbundles the HTTP packet, and forwards the call to the
server process on the designated port

• Replies from the server are sent back as HTTP REPLY packets to the originating
client port where RMI again unbundles the information and sends it to the
appropriate RMI stub

• It is also equally important for the RMI server to specify the host's fully-qualified
domain name via a system property upon startup to avoid any DNS resolution
problems
java.rmi.server.hostname=host.domain.com

• Rather than making use of CGI script for the call forwarding, it is more efficient
to use a servlet implementation of the same

• RMI suffers a significant performance degradation imposed by HTTP tunnelling
• The RMI application will no longer be able to multiplex calls on a single

connection, since it would now follow a discrete request/response protocol
• Additionally, using the cgi script exposes a fairly large security loophole on your

server machine, as now, the script can redirect any incoming request to any
port, completely bypassing your firewalling mechanism

• Using HTTP tunneling precludes RMI applications from using callbacks, which in
itself could be a major design constraint

Distributed Garbage Collection
• One of the joys of programming for the Java platform is not worrying about

memory allocation
• The JVM has an automatic garbage collector that will reclaim the memory from

any object that has been discarded by the running program
• One of the design objectives for RMI was seamless integration into the Java

programming language, which includes garbage collection
• Designing an efficient single-machine garbage collector is hard; designing a

distributed garbage collector is very hard
• The RMI system provides a reference counting distributed garbage collection

algorithm based on Modula-3's Network Objects
• This system works by having the server keep track of which clients have

requested access to remote objects running on the server
• When a reference is made, the server marks the object as "dirty" and when a

client drops the reference, it is marked as being "clean"

• The interface to the DGC (distributed garbage collector) is hidden in the stubs
and skeletons layer

• However, a remote object can implement the java.rmi.server.Unreferenced
interface and get a notification via the unreferenced method when there are no
longer any clients holding a live reference

• In addition to the reference counting mechanism, a live client reference has a
lease with a specified time

• If a client does not refresh the connection to the remote object before the lease
term expires, the reference is considered to be dead and the remote object may
be garbage collected

• The lease time is controlled by the system property java.rmi.dgc.leaseValue
• The value is in milliseconds and defaults to 10 minutes
• Because of these garbage collection semantics, a client must be prepared to

deal with remote objects that have "disappeared"

DGC Example

• There are two remote objects, Hello and MessageObject

• Their implementations are designed to print out information when they are
created, unreferenced, finalized and then deleted

• MessageObjectImpl and HelloImpl implement the finalize method. This is
called when the local garbage collector is about to destroy an object and reclaim
its memory space

• In this implementation, MessageObjectImpl and HelloImpl print a message to
the console

• We run RMIServer and two copies of RMIClient

• You may experiment with the setting of the Java heap size (use the -mx
command line argument) and with explicitly setting the DGC remote reference
leaseValue. To change this, use the following command line:
java –Xmx512M -Djava.rmi.dgc.leaseValue=10000 RMIServer

where the unit of time for leaseValue is in milliseconds

import java.rmi.*;

public interface Hello extends java.rmi.Remote
{ String sayHello() throws RemoteException;
 MessageObject getMessageObject() throws RemoteException;
}

import java.rmi.*;
import java.rmi.server.*;

public class HelloImpl extends UnicastRemoteObject
 implements Hello, Unreferenced
{ public HelloImpl() throws RemoteException
 { super();
 }

 public String sayHello() throws RemoteException
 { return "Hello!";
 }

 public MessageObject getMessageObject()
 throws RemoteException
 { return new MessageObjectImpl();
 }
 [to be continued…]

 public void unreferenced()
 { System.out.println("HelloImpl: Unreferenced");
 }

 public void finalize() throws Throwable
 { super.finalize();
 System.out.println("HelloImpl: Finalize called");
 }
} // class HelloImpl

import java.io.*;
import java.rmi.server.*;

public interface MessageObject extends java.rmi.Remote,
 Serializable
{ int getNumberFromObject() throws java.rmi.RemoteException;
 int getNumberFromClass() throws java.rmi.RemoteException;
}

public class MessageObjectImpl extends UnicastRemoteObject
 implements MessageObject, Unreferenced
{ static int number = 0;
 static int totalNumber = 0;
 private int objNumber;

 public MessageObjectImpl() throws RemoteException
 { objNumber = ++number;
 totalNumber++;
 System.out.println("MessageObject:
 Class Number is #" + totalNumber + " Object Number
 is #" + objNumber);
 }

 public int getNumberFromObject()
 { return objNumber;
 }

 public int getNumberFromClass()

 { return totalNumber;
 }
 [to be continued…]

 public void finalize() throws Throwable
 { super.finalize();
 totalNumber--;
 System.out.println("MessageObject: Finalize for
 object #: " + objNumber);
 }

 public void unreferenced()
 { System.out.println("MessageObject: Unreferenced for
 object #: " + objNumber);
 }
} // class MessageObjectImpl

import java.net.*;
import java.io.*;

import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.LocateRegistry;

public class RMIServer
{ private static final int PORT = 10007;
 private static final String HOST_NAME = "…";

 private static RMIServer rmi;

 public static void main (String[] args)
 { System.setSecurityManager(new RMISecurityManager());
 try
 { rmi = new RMIServer();
 }
 [to be continued…]

 catch (java.rmi.UnknownHostException uhe)
 { System.out.println("The host computer name you
 have specified, " + HOST_NAME + " does not
 match your real computer name.");
 }
 catch (RemoteException re)
 { System.out.println("Error starting service");
 System.out.println("" + re);
 }
 catch (MalformedURLException mURLe)
 { System.out.println("Internal error" + mURLe);
 }
 catch (NotBoundException nbe)
 { System.out.println("Not Bound");
 System.out.println("" + nbe);
 }
 }// main

 public RMIServer() throws RemoteException,
 MalformedURLException, NotBoundException
 { LocateRegistry.createRegistry(PORT);
 [to be continued…]

 System.out.println("Registry created on host computer
 " + HOST_NAME + " on port " + Integer.toString(
 PORT));
 Hello hello = new HelloImpl();
 System.out.println("Remote Hello service
 implementation object created");
 String urlString = "//" + HOST_NAME + ":" +
 PORT + "/" + "Hello";
 Naming.rebind(urlString, hello);
 System.out.println("Bindings Finished, waiting for
 client requests.");
 }
} // class RMIServer

import java.util.Date;
import java.net.MalformedURLException;

import java.rmi.*;

public class RMIClient
{ private static final int PORT = 10007;
 private static final String HOST_NAME = "name";

 private static RMIClient rmi;

 public static void main (String[] args)
 { rmi = new RMIClient();
 }

 public RMIClient()
 { try
 { Hello hello = (Hello)Naming.lookup("//" +
 HOST_NAME + ":" + PORT +
 "/" + "Hello");
 [to be continued…]

 System.out.println("HelloService lookup
 successful");
 System.out.println("Message from Server: " +
 hello.sayHello());

 MessageObject mo;
 for (int i = 0; i< 1000; i++)
 { mo = hello.getMessageObject();
 System.out.println("MessageObject: Class
 Number is #" + mo.getNumberFromClass() +
 " Object Number is #" +
 mo.getNumberFromObject());
 mo = null;
 Thread.sleep(500);
 }

 }
 catch (Exception e)
 { System.out.println(e);
 }

 }

} // class RMIClient

The RMIClientSocketFactory interface

• An RMIClientSocketFactory instance is used by the RMI runtime in order to
obtain client sockets for RMI calls

• A remote object can be associated with an RMIClientSocketFactory when it
is created/exported via the constructors or exportObject methods of
java.rmi.server.UnicastRemoteObject and
java.rmi.activation.Activatable

• An RMIClientSocketFactory instance associated with a remote object will be
downloaded to clients when the remote object's reference is transmitted in an
RMI call

• This RMIClientSocketFactory will be used to create connections to the
remote object for remote method calls

• An RMIClientSocketFactory instance can also be associated with a remote
object registry so that clients can use custom socket communication with a
remote object registry

• An implementation of this interface should be serializable and should implement
Object.equals(java.lang.Object) to return true when passed an instance
that represents the same (functionally equivalent) client socket factory, and false
otherwise

• It should also implement Object.hashCode() consistently with its
Object.equals implementation

Method Summary
 Socket createSocket(String host, int port)

 Create a client socket connected to the specified host and port.

The RMIServerSocketFactory interface

• An RMIServerSocketFactory instance associated with a remote object is used
to obtain the ServerSocket used to accept incoming calls from clients

• An RMIServerSocketFactory instance can also be associated with a remote
object registry so that clients can use custom socket communication with a
remote object registry

Method Summary
 ServerSocket createServerSocket(int port)

 Create a server socket on the specified port (port 0 indicates an
anonymous port).

Using a Custom RMI Socket Factory
• Implementation and use of a custom RMI socket factory e.g. when

o RMI clients and servers need to use sockets that encrypt or compress data
o the application requires different socket types for different remote objects

• Prior to the JavaTM 2 SDK, v1.2 release, it was possible to create and install a
custom java.rmi.server.RMISocketFactory subclass used globally for all
connections created by the RMI transport

• It was not possible, however, to associate a different RMI socket factory on a
per-object basis

• For example in JDKTM v1.1.x, an RMI socket factory could not produce SSL
sockets for one object and use the Java Remote Method Protocol (JRMP)
directly over TCP for a different object in the same virtual machine

• As of the Java 2 SDK, v1.2 release, an RMI application can use a custom RMI
socket factory on a per-object basis, download a client-side socket factory, and
continue to use the default rmiregistry

• The type of socket to use is an application-specific decision
• For instance, if your server sends or receives sensitive data, you might want a

socket that encrypts the data
• For this example, the custom RMI socket factory will create sockets that perform

simple XOR encryption
• This type of encryption will protect data from a casual snooper sniffing packets

on the wire, but is easily decoded by a knowledgeable cryptanalyst
• XOR sockets use special input and output stream implementations to handle

xor-ing the data written to or read from the socket

import java.io.*;

public class XorInputStream extends FilterInputStream
{ private final byte pattern;

 public XorInputStream(InputStream in, byte pattern)
 { super(in);
 this.pattern = pattern;
 }

 public int read() throws IOException
 { int b = in.read();
 if (b != -1)
 b = (b ^ pattern) & 0xFF;
 return b;
 }

 [to be continued…]

 public int read(byte b[], int off, int len)
 throws IOException
 { int numBytes = in.read(b, off, len);
 if (numBytes <= 0)
 return numBytes;
 for(int i = 0; i < numBytes; i++)
 b[off + i] = (byte)((b[off + i] ^ pattern)
 & 0xFF);
 return numBytes;
 }
} // class XorInputStream

import java.io.*;

public class XorOutputStream extends FilterOutputStream
{ private final byte pattern;

 public XorOutputStream(OutputStream out, byte pattern)
 { super(out);
 this.pattern = pattern;
 }

 public void write(int b) throws IOException
 { out.write((b ^ pattern) & 0xFF);
 }
}

import java.io.*;
import java.net.*;

public class XorServerSocket extends ServerSocket
{ private final byte pattern;

 public XorServerSocket(int port, byte pattern)
 throws IOException
 { super(port);
 this.pattern = pattern;
 }

 public Socket accept() throws IOException
 { Socket s = new XorSocket(pattern);
 implAccept(s);
 return s;
 }
}

import java.io.*;
import java.net.*;

public class XorSocket extends Socket
{ private final byte pattern;
 private InputStream in = null;
 private OutputStream out = null;

 public XorSocket(byte pattern)
 throws IOException
 { super();
 this.pattern = pattern;
 }

 public XorSocket(String host, int port, byte pattern)
 throws IOException
 { super(host, port);
 this.pattern = pattern;
 }
 [to be continued…]

 public synchronized InputStream getInputStream()
 throws IOException
 { if (in == null)
 in = new XorInputStream(super.getInputStream(),
 pattern);
 return in;
 }

 public synchronized OutputStream getOutputStream()
 throws IOException
 { if (out == null)
 out = new XorOutputStream(super.getOutputStream(),
 pattern);
 return out;
 }
} // class XorSocket

import java.io.*;
import java.net.*;
import java.rmi.server.*;

public class XorClientSocketFactory
 implements RMIClientSocketFactory, Serializable
{ private final byte pattern;

 public XorClientSocketFactory(byte pattern)
 { this.pattern = pattern;
 }

 public Socket createSocket(String host, int port)
 throws IOException
 { return new XorSocket(host, port, pattern);
 }
 [to be continued…]

 public int hashCode()
 { return (int) pattern;
 }

 public boolean equals(Object obj)
 { return (getClass() == obj.getClass() &&
 pattern == ((XorClientSocketFactory)
 obj).pattern);
 }
} //class XorClientSocketFactory

import java.io.*;
import java.net.*;
import java.rmi.server.*;

public class XorServerSocketFactory
 implements RMIServerSocketFactory
{ private byte pattern;

 public XorServerSocketFactory(byte pattern)
 { this.pattern = pattern;
 }

 public ServerSocket createServerSocket(int port)
 throws IOException
 { return new XorServerSocket(port, pattern);
 }

 public int hashCode() {[Same as client]}

 public boolean equals(Object obj) {[Same as client]}
}

public interface Hello extends java.rmi.Remote
{ String sayHello() throws java.rmi.RemoteException;
}

import java.io.*;
import java.rmi.*;
import java.rmi.server.*;
import java.rmi.registry.*;

public class HelloImpl implements Hello
{ public HelloImpl() {}

 public String sayHello()
 { return "Hello World!";
 }

 public static void main(String args[])
 { System.setSecurityManager(new SecurityManager());
 [to be continued…]

 byte pattern = (byte) 0xAC;
 try
 { HelloImpl obj = new HelloImpl();
 RMIClientSocketFactory csf =
 new XorClientSocketFactory(pattern);
 RMIServerSocketFactory ssf =
 new XorServerSocketFactory(pattern);
 Hello stub = (Hello) UnicastRemoteObject.
 exportObject(obj, 0, csf, ssf);
 LocateRegistry.createRegistry(2002);
 Registry registry = LocateRegistry.
 getRegistry(2002);
 registry.rebind("Hello", stub);
 System.out.println("HelloImpl bound in registry");

 }
 catch (Exception e)
 { System.out.println("HelloImpl exception: " +
 e.getMessage());
 e.printStackTrace();
 }
 }
} //class HelloImpl

import java.rmi.*;
import java.rmi.registry.*;

public class HelloClient
{ public static void main(String args[])
 { System.setSecurityManager(new SecurityManager());
 try
 { Registry registry =
 LocateRegistry.getRegistry(2002);
 Hello obj = (Hello) registry.lookup("Hello");
 String message = obj.sayHello();
 System.out.println(message);

 }
 catch (Exception e)
 { System.out.println("HelloClient exception: " +
 e.getMessage());
 e.printStackTrace();
 }
 }
}

