Naming

Chapter 4

Naming (1)

- Name resolution allows a process to access a named entity.
- A naming system is necessary.
- In a distributed system the naming system is distributed.

Naming (2)

- In a distributed system
- A name is a string.
- An **entity** is a generic resource.
- An access point is a special entity.
- A name of an access point is called **address**.
- Ex: Phone number, channel frequency

Naming (3)

- An entity may have more than one access point.
- An entity name can be **location independent**.
- When
 - a name refers to at most one entity,
 - each entity is referred to by at most one name,
 - a name always refers to the same entity (no reuse)the name is called an **identifier**.

Name resolution

• Distributed name resolution:

N:<l1, l2, ..., ln>

- Closure mechanism: knowing from where to start name resolution.
- Aliases:
 - hard links
 - symbolic links.

Linking and Mounting (2)

For mounting a remote name space in a distributed system it is necessary to resolve:

- •.the name of the access protocol,
- the name of the server,
- the name of the mounting point in the remote name space.

Ex: nfs://flits.cs.vu.nl/home/steen

Name Space Distribution (2)

ltem	Global	Administrational	Managerial
Geographical scale of network	Worldwide	Organization	Department
Total number of nodes	Few	Many	Vast numbers
Responsiveness to lookups	Seconds	Milliseconds	Immediate
Update propagation	Lazy	Immediate	Immediate
Number of replicas	Many	None or few	None
Is client-side caching applied?	Yes	Yes	Sometimes

A comparison between name servers for implementing nodes from a large-scale name space partitioned into a global layer, as an administrational layer, and a managerial layer.

Recursive Name Resolution

Server for node	Should resolve	Looks up	Passes to child	Receives and caches	Returns to requester
cs	<ftp></ftp>	# <ftp></ftp>			# <ftp></ftp>
vu	<cs,ftp></cs,ftp>	# <cs></cs>	<ftp></ftp>	# <ftp></ftp>	# <cs> #<cs, ftp=""></cs,></cs>
ni	<vu,cs,ftp></vu,cs,ftp>	# <vu></vu>	<cs,ftp></cs,ftp>	# <cs> #<cs,ftp></cs,ftp></cs>	# <vu> #<vu,cs> #<vu,cs,ftp></vu,cs,ftp></vu,cs></vu>
root	<ni,vu,cs,ftp></ni,vu,cs,ftp>	# <nl></nl>	<vu,cs,ftp></vu,cs,ftp>	# <vu> #<vu,cs> #<vu,cs,ftp></vu,cs,ftp></vu,cs></vu>	# <nl> #<nl,vu> #<nl,vu,cs> #<nl,vu,cs,ftp></nl,vu,cs,ftp></nl,vu,cs></nl,vu></nl>

Recursive name resolution of *<nl, vu, cs, ftp>*. Name servers cache intermediate results for subsequent lookups.

The DNS Name Space

Type of record	Associated entity	Description
SOA	Zone	Holds information on the represented zone
А	Host	Contains an IP address of the host this node represents
MX	Domain	Refers to a mail server to handle mail addressed to this node
SRV	Domain	Refers to a server handling a specific service
NS	Zone	Refers to a name server that implements the represented zone
CNAME	Node	Symbolic link with the primary name of the represented node
PTR	Host	Contains the canonical name of a host
HINFO	Host	Holds information on the host this node represents
ТХТ	Any kind	Contains any entity-specific information considered useful

The most important types of resource records forming the contents of nodes in the DNS name space.

	Name	Record type	Record value
	cs.vu.ni	SOA	star (1999121502,7200,3600,2419200,86400)
excerpt	cs.vu.ni	NS	star.cs.vu.ni
1	cs.vu.ni	NS	top.cs.vu.nl
om the	cs.vu.ni	NS	solo.cs.vu.nl
	cs.vu.nl	TXT	"Vrije Universiteit - Math. & Comp. Sc."
DNS	cs.vu.nl	MX	1 zephyr.cs.vu.nl
	CS.VU.NI	MA	2 tomado.cs.vu.ni
base	ctor co un ol	HINCO	Gios Ilsiv
us e	star.cs.vu.ni	MY	1 star os ver el
the	star os vu ni	MX	10 zenhyr os vu ni
lie	star cs. vu ni	A	130.37.24.6
e	star.cs.vu.nl	A	192.31.231.42
C	zephyr.cs.vu.nl	HINFO	Sun Unix
vu nl	zephyr.cs.vu.nl	MX	1 zephyr.cs.vu.nl
	zephyr.cs.vu.nl	MX.	2 tomado.cs.vu.nl
	zephyr.cs.vu.nl	A	192.31.231.66
	www.cs.vu.ni	CNAME	soling.cs.vu.nl
	ftp.cs.vu.nl	CNAME	soling.cs.vu.nl
	soling.cs.vu.ni	HINFO	Sun Unix
	soling.cs.vu.nl	MX	1 soling.cs.vu.nl
	soling.cs.vu.nl	MX.	10 zephyr.cs.vu.nl
	soling.cs.vu.nl	A	130.37.24.11
	laser.cs.vu.nl	HINFO	PC MS-DOS
	laser.cs.vu.nl	A	130.37.30.32
	vucs-das.cs.vu.nl	PTR	0.26.37.130.in-addr.arpa
	vucs-das.cs.vu.nl	A	130.37.26.0

DNS Implementation (2)

Name	Record type	Record value
cs.vu.nl	NIS	solo.cs.vu.nl
solo.cs.vu.nl	А	130.37.21.1

Part of the description for the *vu.nl* domain which contains the *cs.vu.nl* domain.

- In a LAN with a few nodes broadcasting can be used.
 - An entity id is sent to each machine asking it to check for the entity owner.
- When the number of nodes if large multicasting can be used.

Scalability Issues

In hierarchical location services the root node must store entries for all of the entities.

The root node can be the system bottleneck.

It can be partitioned in a set of nodes that handle a subset of entities.

Finding the best way to locate the nodes is a challenging issue.

The scalability issues related to uniformly placing subnodes of a partitioned root node across the network covered by a location service.

