
1

Synchronization

Chapter 5

Clock Synchronization

• In a centralized system time is unambiguous.
(each computer has its own clock)

• In a distributed system achieving agreement on
time is not trivial.
(it is impossible to guarantee that clocks run at
exactly the same frequency)

• Clock synchronization

• Logical clocks

2

Clock Synchronization

• When each machine has its own clock, an event
that occurred after another event may
nevertheless be assigned an earlier time.

Example: the make program.

Physical Clocks (1)

Computation of the mean solar day.

3

Physical Clocks (2)

TAI seconds are of constant length, unlike solar
seconds. Leap seconds are introduced when
necessary to keep in phase with the sun.

Clock Synchronization Algorithms

Clock time and UTC when clocks tick at different rates.

Relative error = 10-5

4

Clock Synchronization Algorithms

If there exists a constant ρ such that

1- ρ<= dC/dt <= 1 + ρ (maximum drift rate)

after ∆t the difference can be (2ρ ∆t).

Cristian's Algorithm

Getting the current time from a time server.
Two problems:
• time must never run backward (slow increase of clock)
• server reply with CUTC requires an amount of time: (T1-T0-I)/2.

5

The Berkeley Algorithm

a) The time daemon asks all the other machines for their clock values
b) The machines answer
c) The time daemon tells everyone how to adjust their clock

Logical Clocks

a) Logical Clocks are used when the internal consistency
of clocks matters, not whether they are exactly equal
to the real time.

b) Lamport:
a) if two processes do not interact it is not necessary to

synchronize their clocks.
b) What is important with interacting processes is the order in

which events occur.

6

Lamport Timestamps

• Relation: happens-before →
• a → b means “a happens before b”

• If a and b are two events in the same process and a
occurs before b, then a → b is true

• In two processes, if a is the event of sending the
message m and b is the event of receiving the message
m, then a → b is true

• If a → b and b → c, then a → c

Lamport Timestamps

• Considering two events x and y in two non-interacting
processes, then x → y is not true, but neither is x → y.

• x and y are said to be concurrent.

• For each event a what is needed is a global measure
of time to assign a time value C(a) on which all
processes agree

• If a → b then C(a) < C(b).

7

Lamport Timestamps
Total ordering can be achieved if :

• Each message carries the sending time according to
the sender’s clock

• When the message arrives the receiver clock must be
at least one more than the sending time.

• Between two events the clock must tick al least once.

• No two events ever occur at exactly the same time.

Lamport Timestamps
0

6

12

18

24

30

36

42

48

54

60

0

8

16

24

32

40

48

56

64

72

80

0

10

20

30

40

50

60

70

80

90

100

A

B

C

D

0

6

12

18

24

30

36

42

48

70

76

0

8

16

24

32

40

48

61

69

77

85

0

10

20

30

40

50

60

70

80

90

100

A

B

C

D

Three processes, each with its own clock. The clocks run at different rates.
Lamport's algorithm corrects the clocks.

8

Example: Totally-Ordered Multicasting

Updating a replicated database and leaving it in an inconsistent state.
A totally-ordered multicast (all the messages all delivered in the
same order) is required.

Replicated database in two sites

Totally-Ordered Multicasting

• Each message is multicasted to each process and timestamped
with the logical time of the sender and put on the queue in the
timestamp order

• Messages are delivered in the order they are sent

• Each message is acknowledged to the other processes

• No two messages have the same timestamps

• Each process has the same copy of the queue.

9

Global State (1)

a) The global state of a distributed system is given
by the collection of local state of each process
plus the messages in transit.

b) Global state awareness is useful in several cases.

c) A distributed snapshot is a state in which the
distributed system might have been (a consistent
global state)

Global State (2)

(a) A consistent cut
(b) An inconsistent cut

10

Global State (3)
Using distributed snapshots is possible to record a global state.

1. A process P starts the algorithm recording its own state and
sending a marker along its outgoing channels indicating the
receiver should participate in recording the global state.

a. Organization of a process Q and channels for a distributed snapshot

Global State (4)

b. When process Q receives a marker for the first time records
its local state and send the marker along its out channels.

c. Q records all incoming messages
d. Q receives a marker for its incoming channel and finishes

recording the state of the incoming channel

11

Global State (5)

• When a process received and processed all the
markers along all its incoming channels finishes its
role in the algorithm and send the state to be
collected.

• Any process can start the algorithm, thus the
markers is tagged with the identifier of the starting
process.

Distributed Termination (1)

• Detecting termination of a distributed computation
is not trivial.

• A distributed snapshot may not show a termination
state because messages can be still in transit.

• For termination detection with distributed snapshot
is needed that all channels are empty.

12

Distributed Termination (2)
• When a process Q finishes its part of the snapshot

can send a DONE message to its predecessors if
two conditions are met

– all Q’s successors returned a DONE message
– Q has not received messages between the time of

recording its state and the receiving the marker along
each of its channels

• In all other cases Q sends a CONTINUE message
to its predecessor.

• When only DONE messages are received by the
initiator process the computation is terminated.

Election Algorithms
Algorithms for electing a coordinator (with a special
role) among the processes that compose a distributed
computation.

• Each process is identified by a unique id number

• Every process knows the id num. of every other process

• But it does not know which one are up or down

• Election terminates when all processes agree on a
coordinator.

13

The Bully Algorithm (1)

A process P holds an election as follows:

1. P send an ELECTION message to all processes
with higher numbers

2. If no one responds, P becomes the new
coordinator

3. If one with higher id num. Responds it takes
over and continue the election algorithm.

4. The new coordinator notifies all the processes.

The Bully Algorithm (2)

The bully election algorithm
• Process 4 holds an election
• Process 5 and 6 respond, telling 4 to stop
• Now 5 and 6 each hold an election

14

The Bully Algorithm (3)

d) Process 6 tells 5 to stop
e) Process 6 wins and tells everyone

A Ring Algorithm (1)
Election algorithm using a ring:
• Each process knows who its successor is
• The election process is initiated by a process that

sends an ELECTION message with its number to its
successor

• Each sender add its number to the message.
• When the message returns to the initiator, it looks for

the highest number and send a COORDINATOR
message in the ring with the number of the new
coordinator.

15

A Ring Algorithm (2)

Election algorithm using a ring

Mutual Exclusion:
A Centralized Algorithm

a) Process 1 asks the coordinator for permission to enter a
critical region. Permission is granted

b) Process 2 then asks permission to enter the same critical
region. The coordinator does not reply.

c) When process 1 exits the critical region, it tells the
coordinator, when then replies to 2

16

A Distributed Algorithm (1)

Message sending is reliable and total time ordering is assured.

a) When a process wants to enter a critical region sends to
all processes <cr_name, proc_id, time>

b) When a process receives a message
1. If it is not in a critical region and not want to enter, send back OK
2. If it is in a critical region does not reply and queues the request
3. If it wants to enter a critical region, compares the timestamp if its

request with the timestamp of the received message, lower win
4. When a process exits a critical region sends OK to all the

processes on its queue

It works but it is not efficient!

A Distributed Algorithm (2)

a) Two processes want to enter the same critical region at the same
moment.

b) Process 0 has the lowest timestamp, so it wins.
c) When process 0 is done, it sends an OK also, so 2 can now enter

the critical region.

17

A Token Ring Algorithm

(a) An unordered group of processes on a network. (b) A logical ring constructed in software.

Process 0 is given a token and it circulate on the ring.

A process N that has the token may enter the critical
region or pass it to N+1.

Comparison

A comparison of three mutual exclusion algorithms.

Lost token,
process crash0 to n – 11 to ∞Token ring

Crash of any
process2 (n – 1)2 (n – 1)Distributed

Coordinator crash23Centralized

ProblemsDelay before entry
(in message times)

Messages per
entry/exitAlgorithm

18

The Transaction Model (1)

• Transactions are composed of a set of
operations that respect the all-or-nothing
property.

• Example of transaction with 2 operations:
– op1. Withdraw 1000 �from account 1
– op2. Deposit 1000 �to account 2.

If a failure occurs between op1 and op2, transaction
must be aborted.

The Transaction Model (2)

Updating a master tape is fault tolerant.

19

The Transaction Model (3)

Examples of primitives for transactions.

Write data to a file, a table, or otherwiseWRITE

Read data from a file, a table, or otherwiseREAD

Kill the transaction and restore the old valuesABORT_TRANSACTION

Terminate the transaction and try to commitEND_TRANSACTION

Make the start of a transactionBEGIN_TRANSACTION

DescriptionPrimitive

Special primitives are defined for transactions.

The Transaction Model (4)

(a) Transaction to reserve three flights commits
(b) Transaction aborts when third flight is unavailable

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi full =>

ABORT_TRANSACTION
(b)

BEGIN_TRANSACTION
reserve WP -> JFK;
reserve JFK -> Nairobi;
reserve Nairobi -> Malindi;

END_TRANSACTION
(a)

20

The Transaction Model (5)
ACID PROPERTIES

• ATOMIC: the transaction happens as indivisible

• CONSISTENT: the transaction does not violate system invariants

• ISOLATED: concurrent transactions do not interfere with each
other (SERIALIZABLE)

• DURABLE: after commit, changes are permanent.

Nested and Distributed Transactions

• Other than “flat transactions” other types of transactions
are used.

A nested transaction is a transaction that is logically
decomposed into a hierarchy of sub-transactions.

A hierarchical abort mechanism is to be provided.

A distributed transaction is a flat transaction that
operated on distributed data.

A distributed locking mechanism is needed.

21

Distributed Transactions

(a) A nested transaction
(b) A distributed transaction

Private Workspace

(a) The file index and disk blocks for a three-block file
(b) The situation after a transaction has modified block 0 and appended

block 3
(c) After committing

Private workspace is a method to implement atomic transactions.

22

Writeahead Log

(a) A transaction
(b) – (d) The log before each statement is executed

Rollback is executed in case of an abort.

Log

[x = 0 / 1]
[y = 0/2]
[x = 1/4]

(d)

Log

[x = 0 / 1]
[y = 0/2]

(c)

Log

[x = 0 / 1]

(b)

x = 0;
y = 0;
BEGIN_TRANSACTION;

x = x + 1;
y = y + 2
x = y * y;

END_TRANSACTION;
(a)

Writeahead log is another method to implement atomic
transactions.

Concurrency Control (1)

• Concurrency control is used to assure
SERIALIZABILITY : concurrent transactions do not
interfere with each other.

• The final result should be the same as if the transaction s
were executed one after the other in some specific sequential
order.

23

Concurrency Control (2)

General organization of managers for handling transactions.

Concurrency Control

Concurrency Control (3)
General organization of managers for handling
distributed transactions.

Concurrency Control

24

Serializability

(a) – (c) Three transactions T1, T2, and T3
(d) Possible schedules

BEGIN_TRANSACTION
x = 0;
x = x + 3;

END_TRANSACTION

(c)

BEGIN_TRANSACTION
x = 0;
x = x + 2;

END_TRANSACTION

(b)

BEGIN_TRANSACTION
x = 0;
x = x + 1;

END_TRANSACTION

(a)

Illegalx = 0; x = 0; x = x + 1; x = 0; x = x + 2; x = x + 3;Schedule 3

Legalx = 0; x = 0; x = x + 1; x = x + 2; x = 0; x = x + 3;Schedule 2

Legalx = 0; x = x + 1; x = 0; x = x + 2; x = 0; x = x + 3Schedule 1

(d)
Time -->

Conflicting Operations

• Two operations conflict if they operate on same
data item and at least one of them is a write.

• Concurrency control must find a proper schedule
for conflicting operations (by a correct
synchronization).

• Used techniques:
• Two-phase locking
• Timestamp ordering

25

Two-Phase Locking (1)

• In Two-phase locking the scheduler first acquires all
the locks it needs during the growing phase and then
release them in the shrinking phase.

Two-Phase Locking (2)
Basic rules
1. When the scheduler receives an operation on x is check if the

operations conflicts with any other operation for which it
already granted a lock. If there no conflict the scheduler grants
a lock for x and asks the data manager to run the operation.

2. The scheduler will never release the lock for x until the data
manager has executed the operation.

3. Once the scheduler released a lock on behalf of T it will never
grant another lock on behalf of T.

These three rules guarantee serializability.

26

Strict Two-Phase Locking

In Strict two-phase locking locks are released when a
transaction is finished.

Pessimistic Timestamp Ordering (1)
• In concurrency control using timestamps each

transaction has a timestamp ts(T).

• Every data item has a read timestamp tsRD(T) and a
write timestamp tsWR(T)

• If two operations conflict the data manager processes
the one with the lowest timestamp.

• Timestamps are used to abort operations.

27

Pessimistic Timestamp Ordering (2)

Examples of concurrency control using timestamps.

T2

T2 writing a data item x T2 reading a data item x

2PL and Timestamp Ordering
• Two-phase locking can lead to deadlock, so deadlock

detection is needed.

• Timestamp ordering is deadlock free.

• Optimistic concurrency control is an alternative
approach to pessimistic strategy.

