
Replication and Consistency

Chapter 6

Data Replication is used for
• improving performance

• enhancing reliability

But data replicas must be kept consistent.

Efficient consistency models are hard to
be implemented.

Replication

Object Replication (1)

• Organization of a distributed remote object shared by
two different clients.

• How access to a shared object ?

Object Replication (2)

(a) A remote object capable of handling concurrent invocations
on its own.

(b) A remote object for which an object adapter is required to
handle concurrent invocations

Object Replication (3)

How to manage replics synchronizations ?

(a) A distributed system for replication-aware distributed objects (Globe, SOS).
(b) A distributed system responsible for replica management (Piranha).

Data-Centric Consistency Models
The general organization of a logical data store, physically

distributed and replicated across multiple processes.

A consistency model is a contract between processes and
the data store: if processes obeys certain rules the store
contains correct values.

Strict Consistency

Behavior of two processes, operating on the same data item.
(a) A strictly consistent store.
(b) A store that is not strictly consistent.

In S.C. writes are instantaneously visible to all processes.

Any read on a data item x returns a value corresponding
to the result of the most recent write on x.

Global time is needed.

Sequential Consistency

(a) A sequentially consistent data store.
(b) A data store that is not sequentially consistent.

The result of any execution is the same as if the operations by all
processes on the data store were executed in some sequential order
and the operations of each individual process appear in this
sequence in the order specified by its program.

Linearizability (1)

Three concurrently executing processes.

z = 1;
print (x, y);

y = 1;
print (x, z);

x = 1;
print (y, z);

Process P3Process P2Process P1

The result of any execution is the same as if the operations by all
processes on the data store were executed in some sequential order
and the operations of each individual process appear in this
sequence in the order specified by this program. In addition, if
tsOP1(x) < tsOP2(y), then operation OP1(x) should precede OP2(y) in
this sequence.

Linearizability (2)

Four valid execution sequences for the processes.

y = 1;
x = 1;
z = 1;
print (x, z);
print (y, z);
print (x, y);

Prints: 111111

Signature:
111111

(d)

y = 1;
z = 1;
print (x, y);
print (x, z);
x = 1;
print (y, z);

Prints: 010111

Signature:
110101

(c)

x = 1;
y = 1;
print (x,z);
print(y, z);
z = 1;
print (x, y);

Prints: 101011

Signature:
101011

(b)

x = 1;
print ((y, z);
y = 1;
print (x, z);
z = 1;
print (x, y);

Prints: 001011

Signature:
001011

(a)

Causal Consistency (1)

Writes that are potentially causally related must be
seen by all processes in the same order. Concurrent
writes may be seen in a different order on different
machines.

If two processes simultaneously write two variables are
not potentially causally related (concurrent writes).

A read followed later by a write can be potentially
causally related.

Causal Consistency (2)

This sequence is allowed with a causally-consistent store,
but not with sequentially or strictly consistent store:
concurrent writes can be seen in a different order.

concurrent

Causal Consistency (3)

(b) A correct sequence of events in a casually-consistent store.

(a) A violation of a casually-consistent store.

concurrent

FIFO Consistency (1)

Writes done by a single process are seen by all other
processes in the order in which they were issued, but
writes from different processes may be seen in a
different order by different processes.

Two or more writes from the same process must be
seen in order. Writes from different processes can be
seen in different order.

FIFO Consistency (2)

A valid sequence of events of FIFO consistency

FIFO consistency is easy to be implemented.

FIFO Consistency (3)

Statement execution as seen by the three processes.
The statements in bold are the ones that generate the output shown.

y = 1;
print (x, z);
z = 1;
print (x, y);
x = 1;
print (y, z);

Prints: 01

(c)

x = 1;
y = 1;
print(x, z);
print (y, z);
z = 1;
print (x, y);

Prints: 10

(b)

x = 1;
print (y, z);
y = 1;
print(x, z);
z = 1;
print (x, y);

Prints: 00

(a)

z = 1;
print (x, y);

y = 1;
print (x, z);

x = 1;
print (y, z);

Process P3Process P2Process P1

FIFO Consistency (4)

Two concurrent processes that can be killed with FIFO
consistency.

y = 1;
if (x == 0) kill (P1);

x = 1;
if (y == 0) kill (P2);

Process P2Process P1

x and y are initialized to 0.

Consistency Models

All processes see writes from each other in the order they were issued. Writes from
different processes may not always be seen in that order.FIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
time

Sequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Weak Consistency (1)

Use of synchronized variables that allow to
synchronize all local copies of the data store.

synchronize(S)
Properties:
• Accesses to synchronization variables associated with a data

store are sequentially consistent.
• No operation on a synchronization variable is allowed to be

performed until all previous writes have been completed
everywhere.

• No read or write operation on data items are allowed to be
performed until all previous operations to synchronization
variables have been performed.

Weak Consistency (2)

A program fragment in which some variables may be kept
in registers. When f is executed a and b must be put in
memory.

int a, b, c, d, e, x, y; /* variables */
int *p, *q; /* pointers */
int f(int *p, int *q); /* function prototype */

a = x * x; /* a stored in register */
b = y * y; /* b as well */
c = a*a*a + b*b + a * b; /* used later */
d = a * a * c; /* used later */
p = &a; /* p gets address of a */
q = &b /* q gets address of b */
e = f(p, q) /* function call */

Weak consistency enforces consistency of a group of
operations not on individual reads or writes.

Weak Consistency (3)

An invalid sequence for weak consistency.

A valid sequence of events for weak consistency.

Release Consistency (1)

Two operations are defined:
acquire(L) and release(L)

Rules:
• Before a read or write operation on shared data is performed,

all previous acquires done by the process must have completed
successfully.

• Before a release is allowed to be performed, all previous reads
and writes by the process must have completed.

• Accesses to synchronization variables are FIFO consistent
(sequential consistency is not required).

Release Consistency (2)

A valid event sequence for release consistency.

P3 does not do an acquire before reading data, so
returning a is allowed.

Entry Consistency (1)

• Each shared data must be associated with some
synchronization variable.

• Lists of shared data items are associated to a
synchronization variable.

• Acquire and Release are then more efficient.

• Access to disjoint sets of shared data items can be
concurrent.

Entry Consistency (2)

Rules:
1 An acquire access of a synchronization variable is not allowed

to perform with respect to a process until all updates to the
guarded shared data have been performed with respect to that
process.

• This means that at an acquire all remote changes to
the guarded data must be visible.

Entry Consistency (3)

Rules:
2 Before an exclusive mode access to a synchronization variable

by a process is allowed to perform with respect to that
process, no other process may hold the synchronization
variable, not even in nonexclusive mode.

• That is before updating a a shared data item, a
process must enter a critical region in exclusive mode

Entry Consistency (4)

Rules:
3 After an exclusive mode access to a synchronization variable

has been performed, any other process's next nonexclusive
mode access to that synchronization variable may not be
performed until it has performed with respect to that variable's
owner.

• That is if a process wants to enter a critical region in
nonexclusive mode it must check with the owner of
the synch variable to get updated copies of data.

Entry Consistency (5)

A valid event sequence for entry consistency.

Summary of Consistency Models

(a) Consistency models not using synchronization operations.
(b) Models with synchronization operations.

(b)

Shared data pertaining to a critical region are made consistent when a critical region is
entered.

Entry

Shared data are made consistent when a critical region is exitedRelease

Shared data can be counted on to be consistent only after a synchronization is doneWeak

DescriptionConsistency

(a)

All processes see writes from each other in the order they were issued. Writes from
different processes may not always be seen in that orderFIFO

All processes see causally-related shared accesses in the same order.Causal

All processes see all shared accesses in the same order. Accesses are not ordered in
timeSequential

All processes must see all shared accesses in the same order. Accesses are
furthermore ordered according to a (nonunique) global timestampLinearizability

Absolute time ordering of all shared accesses matters.Strict

DescriptionConsistency

Eventual Consistency

The model of a mobile user accessing different replicas of a distributed database.

If update do not take place for a long time, all replicas will
become inconsistent.

Client-centric Consistency

Client-centric consistency models can be used.

If a user moves can access inconsistent data.

X=3

X=2

Monotonic Reads

The read operations performed by a single process P at two different local copies of the
same data store.

(a) A monotonic-read consistent data store
(b) A data store that does not provide monotonic reads.

Successive reads by a process of a data item x
return the same value or a more recent value.

Monotonic Writes

The write operations performed by a single process P at two different local
copies of the same data store

a) A monotonic-write consistent data store.
b) A data store that does not provide monotonic-write consistency.

A write operation by a process on a data item x is
completed before any successive write on x by the same
process.

Read Your Writes

(a) A data store that provides read-your-writes consistency.
(b) A data store that does not.

The effect of a write operation of a process on a data
item x will always be seen by a successive read on x
by the same process.

Writes Follow Reads

(a) A writes-follow-reads consistent data store
(b) A data store that does not provide writes-follow-reads consistency

A write operation by a process on a data item x
following a previous read operation on x takes place on
the same or a more recent value of x that was read.

Replica Placement

The logical organization of different kinds of
copies of a data store into three concentric rings.

Permanent Replicas

Basic form of replicas.

• Web replication on a single local area network

• Web mirroring

• DB replication on a COW

Server-Initiated Replicas

Counting access requests from different clients.

Client-Initiated Replicas

• Client caches are used to temporarily store a
copy of data it has just requested.

• Caches can be local or close to the client node.

• The server does not worry about data
consistency.

• More than one client can share a cache.

Update Propagation

• How updated values are propagated ?

• Status versus operations

• Pull versus push protocols

• Unicasting versus multicasting

Pull versus Push Protocols

A comparison between push-based and pull-based protocols
in the case of multiple client, single server systems.

Fetch-update timeImmediate (or fetch-update time)Response time at
client

Poll and updateUpdate (and possibly fetch update later)Messages sent

NoneList of client replicas and cachesState of server

Pull-basedPush-basedIssue

Consistency Protocols

• A consistency protocol defines an implementation
of a specific consistency model.

• Primary-based protocols

• Replicated-write protocols

• Cache-coherence protocols.

