
Distributed File Systems

Chapter 10

Distributed File System

a) A distributed file system is a file system that
resides on different machines, but offers an
integrated view of data stored on remote disks.

b) Examples of distributed file systems
a) NFS
b) AFS
c) Coda
d) Plan9
e) xFS

Network File System (NFS)

• Developed originally at Sun Microsystems for
UNIX workstations.

• It is a model to integrate different file systems.

• Based on the idea that each file server provides a
standardized view of its local file system.

• NFS runs on heterogeneous groups of computers.

NFS Architecture (1)

• NFS uses a remote access model: clients are
unaware of file locations.

• Servers export a set of operations on files.

The upload/download model.The remote access model.

NFS Architecture (2)

The basic NFS architecture for UNIX systems.

NFS Architecture (3)

• NFS is independent from local file system
organization.

• It integrates file systems used in UNIX, Linux,
Windows, and other operating systems.

• The model offered is similar to UNIX-like file
systems based on files as sequences of bytes.

File System Model

Write data to a fileYesYesWrite

Read the data contained in a fileYesYesRead

Set one or more attribute values for a fileYesYesSetattr

Read the attribute values for a fileYesYesGetattr

Read the path name stored in a symbolic linkYesYesReadlink

Read the entries in a directoryYesYesReaddir

Look up a file by means of a file nameYesYesLookup

Close a fileYesNoClose

Open a fileYesNoOpen

Remove an empty subdirectory from a directoryNoYesRmdir

Change the name of a fileYesYesRename

Create a special fileNoYesMknod

Create a subdirectory in a given directoryNoYesMkdir

Create a symbolic link to a fileNoYesSymlink

Create a hard link to a fileYesYesLink

Create a nonregular fileYesNoCreate

Create a regular fileNoYesCreate

Descriptionv4v3Operation

An incomplete list of file system operations supported by NFS.

Communication (1)
a) In NFS all communications between servers and

clients are implemented using Remote Procedure
Call (RPC).

b) The used protocol is the Open Network Computing
RPC.

c) Before version 4, NFS used stateless servers.

d) The clients were in charge to maintain the status of
current operations on a remote file system.

Communication (2)
• In version 4, NFS introduced compound

operations to improve the reduce the number of
RPC calls and improve communication
performance.

• This is appropriate for wide-area file systems.

• Compound operations are not handled as
transactions.

• If one operation in a compound procedure fails
successive operations are not executed.

Communication (3)

(a) Reading data from a file in NFS version 3.
(b) Reading data using a compound procedure in version 4.

Communication (4)

• In version 4, NFS servers maintain the status of
some operations.

• This model was introduced to handle with wide-
area network operations such as

– file locking
– cache consistency protocols
– callback procedures.

Naming (1)
File sharing is based on mounting operations.

Mounting (part of) a remote file system in NFS.

Naming (2)
An NFS server can mount directories exported from
other servers, but these cannot be exported to clients.

Mounting nested directories from multiple servers in NFS.

Automounting (1)
• When a file system should be mounted on a

client ?

• An automatic procedure is implemented by an
automounter for NFS that
– mount home directories of users when they log

into the client and
– mount other file system on demand (when files are

accessed).

Automounting (2)

A simple automounter for NFS.

Automounting (3)
• To avoid to call the automounter whenever a file is

read, directories can be mounted on a special sub-
directory and using a symbolic link to each mounted
directory.

Using symbolic links with automounting.

File Attributes (1)
• NFS file attributes are divided between two

groups: 12 mandatory (supported by every
implementation) and 43 recommended
attributes.

Server-unique identifier of the file's file systemFSID

Indicator for a client to see if and/or when the file has
changedCHANGE

The length of the file in bytesSIZE

The type of the file (regular, directory, symbolic link)TYPE

DescriptionAttribute

Some general mandatory file attributes in NFS.

File Attributes (2)

Time when the file was createdTIME_CREATE
Time when the file data were last modifiedTIME_MODIFY
Time when the file data were last accessedTIME_ACCESS
The character-string name of the file's ownerOWNER

Locations in the network where this file system may be foundFS_LOCATIONS

A file-system unique identifier for this fileFILEID
The server-provided file handle of this fileFILEHANDLE
an access control list associated with the fileACL

DescriptionAttribute

Some general recommended file attributes.

Semantics of File Sharing (1)

• According to the UNIX semantics in a sequential
system that allows to share files

– a read after a write, returns the value just written
– after two successive writes a read operation returns the

value stored by the last write.

• In a distributed system, UNIX semantics can be
assured if there is only one file server and clients do
not cache files.

Semantics of File Sharing (2)

In a distributed system with
caching, obsolete values may be
returned.

On a single
machine, when a
read follows a
write, the value
returned by the
read is the value
just written.

Semantics of File Sharing (3)

• Although NFS in theory uses the remote access
model, most implementation use local caches, so
they in practice use the upload/download model.

• NSF implements the session semantics:
changes to an open file are initially visible only to
the process that modified the file . When the file is
closed all the changes are visible to other
processes (or machines).

• What happens when two processes caches and
modify a file?

Semantics of File Sharing (4)

All changes occur atomicallyTransaction

No updates are possible; simplifies sharing and replicationImmutable files

No changes are visible to other processes until the file is closedSession semantics

Every operation on a file is instantly visible to all processesUNIX semantics

CommentMethod

Four ways of dealing with the shared files in a distributed system.

File Locking in NFS (1)
• NFS version 4 use a file locking method.

File Locking in NFS (1)
• NFS version 4 use a file locking method.
• Read locks are not mutually exclusive.
• Write lock is exclusive.

Renew the leas on a specified lockRenew

Remove a lock from a range of bytesLocku

Test whether a conflicting lock has been grantedLockt

Creates a lock for a range of bytesLock

DescriptionOperation

NFS version 4 operations related to file locking.

File Locking in NFS (2)
• NFS implements an implicit way to lock a file: share reservation

(b)

FailSucceedFailSucceedREAD
FailFailSucceedSucceedWRITE
FailFailFailSucceedBOTH

BOTHWRITEREADNONE

(a)

Requested file denial state

FailFailFailSucceedBOTH
FailFailSucceedSucceedWRITE
FailSucceedFailSucceedREAD

BOTHWRITEREADNONE
Current file denial state

Request
access

Current
access
state

The result of an open operation on an already opened by another client with
share reservations in NFS.

(a) When the client requests shared access given the current denial state.
(b) When the client requests a denial state given the current file access state.

NFS Client Caching (1)

• NFS version 4 provides Client-side caching including
a Memory cache and a Disk cache.

• File data, attributes, handles, and directories can be
cached.

NFS Client Caching (2)

• Caching of file data uses the session semantics:
modification of cached data must be flushed to the
server when a client closes the file.

• Data can be retained in the cache, but if the file will be
re-opened they must be revalidated.

• NFS uses open delegation to delegate some rights to a
client that opened a file.

• The client can take some decisions without asking the
server. Some other decisions remain to the server.

NFS Client Caching (3)
• An NFS may need to recall a delegation when another

client on a different machine asks for access rights to a
file.

• The callback mechanism is used to recall file delegation.

NFS Client Caching (4)
• Attribute values, file handles, and directories can be

cached, but modifications to those values must be sent
to the server.

• Cache entries are automatically invalidated after a
certain amount of time. This oblige clients to
revalidate them before to use them again.

• NFS v4 provides a support for file system replication
through a list of locations of a file system.

NFS Fault Tolerance
• As NFS v4 provides stateful servers (e.g., file locking,

open delegation), fault tolerance and recovery
mechanisms need to be designed to handle with RPC
failures.

• RPC may use TCP or UDP protocols.

• RPC may incurs in duplicate requests when an RPC
reply is lost; so the server can carry out the request
more than one time.

Duplicate-Request Cache
Each RPC request from a client carries a unique transaction
id (XID) and it is cached by the server with the reply.

Three situations for handling retransmissions.
(a) The request is still in progress
(b) The reply has just been returned
(c) The reply has been some time ago, but was lost.

NFS Security
Security in NFS is mainly based on secure channels and
file access control.

The NFS security architecture.

Secure RPCs

Secure RPC in NFS version 4 is based on RPCSRC_GSS.

Access Control

The classification of operations recognized by NFS with respect to access control.

Permission to to access a file locally at the server with synchronous reads and writesSynchronize
Permission to to change the ownerWrite_owner
Permission to to write the named attributes of a fileWrite_named_attrs
Permission to to read the named attributes of a fileRead_named_attrs
Permission to to change the other basic attributes of a fileWrite_attributes
The ability to read the other basic attributes of a fileRead_attributes
Permission to to write the ACLWrite_acl
Permission to to read the ACLRead_acl
Permission to to delete a file or directory within a directoryDelete_child
Permission to to delete a fileDelete
Permission to to create a subdirectory to a directoryAdd_subdirectory
Permission to to add a new file t5o a directoryAdd_file
Permission to to list the contents of a directoryList_directory
Permission to to execute a fileExecute
Permission to to append data to a fileAppend_data
Permission to to modify a file's dataWrite_data
Permission to read the data contained in a fileRead_data

DescriptionOperation

Values of the ACL
attribute

The NFS User Types

Any system-defined service processService
Any authenticated user of a processAuthenticated
Anyone accessing the file without authenticationAnonymous
Any process accessing the file as part of a batch jobBatch

Any process accessing the file through a dialup connection
to the serverDialup

Any process accessing the file via the networkNetwork
Any process accessing the file from an interactive terminalInteractive
Any user of a processEveryone
The group of users associated with a fileGroup
The owner of a fileOwner

DescriptionType of user

The various kinds of users and processes distinguished by
NFS with respect to access control.

Overview of Coda (1)
• Coda is based on the Andrew File System (AFS).
• Goals: naming and location transparency and high

availability.

The overall organization of AFS.

Overview of Coda (2)

• In each Virtue client is running a Venus process
that plays the same role of an NFS client.

• Venus role is also to allows the client to
continue to work even if the file server access is
not possible.

• Communication is based on reliable RPC.

Overview of Coda (3)

The internal organization of a Virtue workstation.

Overview of Coda (4)
• Coda implements a UNIX-like file system with

similar operations of NFS.

• Coda provides a global shared name space maintained
by Vice servers

• Clients access the global name space through a special
subdirectory (/afs).

• When accessed, a part of the shared name space is
mounted locally.

Naming in Coda (1)
• Namining in Coda is similar to that of UNIX.

• File are grouped in volumes - disk partitions that
correspond to file systems associated to a user and
stored in a Vice server.

• Differently form NFS, in Coda shared file have the
same name.

• Coda uses Logical volumes and Replicated Volume
Identifiers (RVI).

Naming in Coda (2)

Clients in Coda have access to a single shared name space.

File Identifiers
File ids are composed of two parts: RVID + vnode

The implementation and resolution of a Coda file identifier.

Transactional Semantics
Coda implements a form of weak transactional
semantics by interpreting a session as a transaction.

Different types of sessions are defined and different
system calls are associated to a session type.

YesYesFile contents
YesYesFile length
YesYesLast modification time
NoYesAccess rights
NoYesFile identifier

Modified?Read?File-associated data

The metadata read and modified for a store session type in Coda.

Server Replication
• Coda allows replicated file servers called Volume

Storage Group (VSG).
• For each client an Accessible VSG is provided and a

replicated-write protocol is used for consistency.

Two clients with different AVSG for the same replicated file.

Access Control
• Access control lists are associated with directories not

with files.

Modify the ACL of the directoryAdminister
Delete an existing fileDelete
Add a new file to the directoryInsert
Look up the status of any fileLookup
Modify any file in the directoryWrite
Read any file in the directoryRead

DescriptionOperation

Classification of file and directory operations recognized
by Coda with respect to access control.

Plan 9: Resources Unified to Files
• All resources are accessed using a file-like syntax on

a pool of servers.

General organization of Plan 9

Communication
• For communications Plan 9 uses the 9P protocol and

network interfaces are represented as directories.

Provides diagnostic information on the current status of the connectionstatus
Provides information on the other side of the connectionremote
Provides information on the caller's side of the connectionlocal
Used to accept incoming connection setup requestslisten
Used to read and write datadata
Used to write protocol-specific control commandsctl

DescriptionFile

Files associated with a single TCP connection in Plan 9.

Naming
• A client can mount multiple name spaces at the same

mount point composing a union directory.

• The mounting order is maintained in file search.

A union directory in Plan 9.

Overview of xFS.
• The xFS file system is based on a serverless model.
• The entire file system is distributed across machines

including clients.
• Each machine can run a storage server, a metadata

server and a client process.

A typical distribution of xFS processes across multiple machines.

Communication in xFS

• RPC was substituted with active messages in xFS.

• RPC performance was not the best and fully
decentralization is hard to manage with RPC.

• In an active message, when a message arrives, an
handler is automatically invoked for execution.

Overview of SFS
• The Secure File System uses keys for file system

security.
• Clients cannot access a file without having a secret key.

The organization of SFS.

Summary

A comparison between NFS, Coda, Plan 9, xFS. N/S indicates that nothing has been specified.

NFS BASEDUNIX basedUNIX basedDirectory
operationsMany operationsAccess control

Needham-
Schroeder

Needham-
Schroeder

Existing
mechanismsSecure channels Self-cert.No pathnames

N/SCheckpoint & write
logsN/SReintegrationClient-basedRecovery

Reliable comm.StripingReliable comm.Replication and
cachingReliable comm.Fault tolerance

NoneStripingNoneROWAMinimalReplication

write-backwrite-backwrite-throughwrite-backwrite-backCache consist.

N/SUNIXUNIXTransactionalSessionSharing sem.

File systemGlobalServerGlobalFile serverFile ID scope

GlobalGlobalPer processGlobalPer clientName space

DirectoryFile systemFile systemFile systemDirectoryMount granularity

NoYesNoYesNoServer groups

MediumFatThinFatThin/FatClient process

RPCActive msgsSpecialRPCRPCCommunication

RemoteLog-basedRemoteUp/DownloadRemoteAccess model

Scalable securityServerless systemUniformityHigh availabilityAccess
transparencyDesign goals

SFSxFSPlan 9CodaNFSIssue

	Distributed File Systems
	Distributed File System
	Network File System (NFS)
	NFS Architecture (1)
	NFS Architecture (2)
	NFS Architecture (3)
	File System Model
	Communication (1)
	Communication (2)
	Communication (3)
	Communication (4)
	Naming (1)
	Naming (2)
	Automounting (1)
	Automounting (2)
	Automounting (3)
	File Attributes (1)
	File Attributes (2)
	Semantics of File Sharing (1)
	Semantics of File Sharing (2)
	Semantics of File Sharing (3)
	Semantics of File Sharing (4)
	File Locking in NFS (1)
	File Locking in NFS (1)
	File Locking in NFS (2)
	NFS Client Caching (1)
	NFS Client Caching (2)
	NFS Client Caching (3)
	NFS Client Caching (4)
	NFS Fault Tolerance
	Duplicate-Request Cache
	NFS Security
	Secure RPCs
	Access Control
	The NFS User Types
	Overview of Coda (1)
	Overview of Coda (2)
	Overview of Coda (3)
	Overview of Coda (4)
	Naming in Coda (1)
	Naming in Coda (2)
	File Identifiers
	Transactional Semantics
	Server Replication
	Access Control
	Plan 9: Resources Unified to Files
	Communication
	Naming
	Overview of xFS.
	Communication in xFS
	Overview of SFS
	Summary

