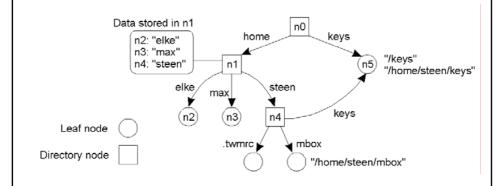
## Naming nei Sistemi Distribuiti

# Naming (1)

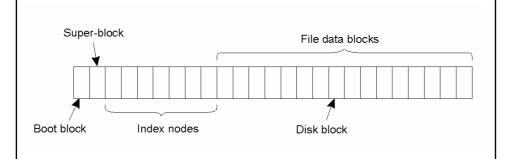
- La risoluzione dei nomi permette ad un processo di accedere ad una entità in un sistema distribuito.
- Un sistema di naming è necessario per avere un modello comune di identificazione delle risorse.
- In un sistema distribuito il naming system è distribuito, per ragioni di scalabilità, efficienza, affidabilità, ecc.

## Naming (2)


- In un sistema distribuito
  - Un **nome** è una stringa.
  - Una entità è una risorsa generica.
  - Un access point è una entità speciale.
  - Un nome di un access point è chiamato address.
- Esempi: Telefono numero, canale frequenza

# Naming (3)

- Una entità può avere più di un access point.
- Un nome di entità può essere indipendente dalla locazione.
- Quando
  - Un nome si riferisce ad una sola entità,
  - Ogni entità è riferita al più da un nome,
  - Un nome fa riferimento sempre ad una stessa entità (no riuso)


Il nome è detto identificatore (identifier).

# Name Spaces (1)

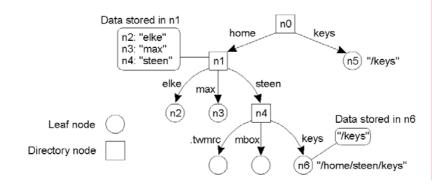


Un grafo di naming generale con un solo nodo radice.

# Name Spaces (2)



L'organizzazione generale della implementazione del file system di UNIX su un disco logico di blocchi contigui.


## Name resolution

Risoluzione dei nomi distribuita :

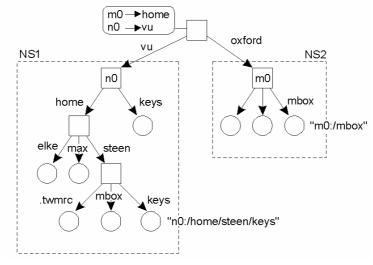
$$N:$$

- Closure mechanism: conosce da dove la risoluzione di un nome ha inizio.
- · Vengono usati gli alias:
  - hard links
  - symbolic links.

# Linking e Mounting (1)



Il concetto di link simbolico spiegato in un grafo di naming.


## Linking e Mounting (2)

- Per il montaggio di un name space remoto in un sistema distribuito è necessario risolvere:
  - 1. il nome del protocollo di accesso,
  - 2. il nome del server,
  - 3. il nome del punto di mounting nel name space remoto.

Esempio: nfs://flits.cs.vu.nl/home/steen

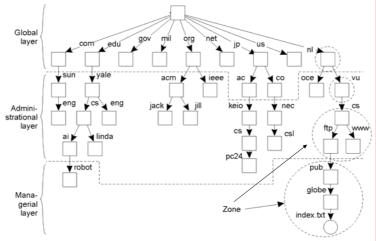
# Linking e Mounting (3) Name server for foreign name space Machine B Reference to foreign name space Mounting di un name space remoto attraverso un protocollo specifico.

# Linking e Mounting (3)



Organizzazione del DEC Global Name Service

## Name Space Distribuito


I sistemi distribuiti di grandi dimensioni usano name server gerarchici.

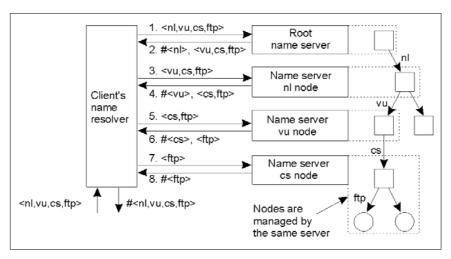
La replicazione dei name server può essere utile.

I name space possono essere suddivisi in più livelli logici:

- Livello globale,
- Livello di amministrazione,
- Livello di gestione.

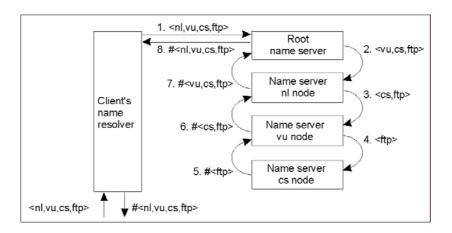
# Distribuzione del Name Space (1)




Un esempio di partizionamento del DNS name space a tre livelli che include file accessibili via Internet.

# Distribuzione del Name Space (2)

|                              | Globale  | Amministrativo  | Gestionale   |
|------------------------------|----------|-----------------|--------------|
| Scala geografica della rete  | Mondiale | Organizzazione  | Dipartimento |
| Numero totale dei nodi       | Pochi    | Molti           | Molti        |
| Tempi di risposta            | Secondi  | Millisecondi    | Immediati    |
| Propagazione degli update    | Lenta    | Immediata       | Immediata    |
| Numero di repliche           | Molti    | Pochi o nessuna | Nessuna      |
| E' usato caching nel client? | Si       | Si              | Talvolta     |


Un confronto tra le caratteristiche delle organizzazione dei name servers a diversi livelli di scala.

## Name Resolution Iterativa

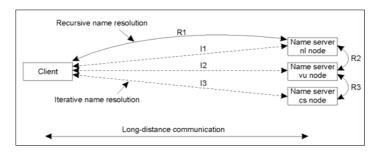


Lo schema di name resolution iterativa. Il cliente invia richieste ad ognuno dei name server. Ogni server svolge una parte della risoluzione e il client effettua le singole richieste.

## Name Resolution Ricorsiva



Lo schema di name resolution ricorsiva. Il cliente invia richieste al name server radice. Ogni server svolge una parte della risoluzione e effettua le richieste ai server sottostanti.


## Name Resolution Ricorsiva

| Server per nodo | Deve<br>risolvere             | Looks up      | Passa al<br>figlio      | Riceve e<br>memorizza                                         | Ritorna al richiedente                                                                         |
|-----------------|-------------------------------|---------------|-------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| cs              | <ftp></ftp>                   | # <ftp></ftp> |                         |                                                               | # <ftp></ftp>                                                                                  |
| vu              | <cs,ftp></cs,ftp>             | # <cs></cs>   | <ftp></ftp>             | # <ftp></ftp>                                                 | # <cs><br/>#<cs, ftp=""></cs,></cs>                                                            |
| ni              | <vu,cs,ftp></vu,cs,ftp>       | # <vu></vu>   | <cs,ftp></cs,ftp>       | # <cs><br/>#<cs,ftp></cs,ftp></cs>                            | # <vu><br/>#<vu,cs><br/>#<vu,cs,ftp></vu,cs,ftp></vu,cs></vu>                                  |
| root            | <ni,vu,cs,ftp></ni,vu,cs,ftp> | # <nl></nl>   | <vu,cs,ftp></vu,cs,ftp> | # <vu><br/>#<vu,cs><br/>#<vu,cs,ftp></vu,cs,ftp></vu,cs></vu> | # <nl><br/>#<nl,vu><br/>#<nl,vu,cs><br/>#<nl,vu,cs,ftp></nl,vu,cs,ftp></nl,vu,cs></nl,vu></nl> |

Risoluzione dei nomi ricorsiva di < nl, vu, cs, ftp>. I name server memorizzano nella cache i risultati intermedi per accessi successivi.

# Implementazione della Risoluzione dei Nomi

Confronto tra name resolution ricorsiva e iterativa in relazione ai costi di comunicazione



Aspetti positivi della risoluzione ricorsiva:

- Minori costi di comunicazione
- Benefici dal caching dei nomi nei server

# II Name Space del DNS

| Tipo di<br>record | Entità<br>Associata | Descrizione                                                       |
|-------------------|---------------------|-------------------------------------------------------------------|
| SOA               | Zona                | Contiene informazioni sulla zona rappresentata                    |
| А                 | Host                | Contiene un IP address dell' host che questo nodo rappresenta     |
| MX                | Dominio             | Indica un mail server per gestire gli indirizzi di email del nodo |
| SRV               | Dominio             | Indica un server per gestire un servizio specifico del nodo       |
| NS                | Zona                | Indica un name server che implementa la zona interessata          |
| CNAME             | Nodo                | Link Simbolico con il nome primario della zona rappresentata      |
| PTR               | Host                | Contiene il nome canonico dell'host                               |
| HINFO             | Host                | Contiene infomazioni sugli host che il nodo rappresenta           |
| TXT               | Ogni tipo           | Contiene informazioni ritenute utili sull'entità                  |

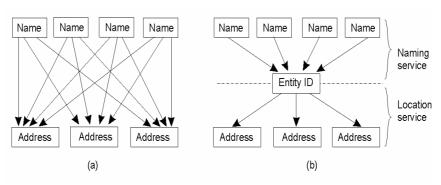
I tipi più importanti di record delle risorse formano i contenuti dei nodi nel name space del DNS.

# Implementazione del DNS (1)

Un estratto del database DNS per la zona cs.vu.nl

| Name              | Record type | Record value                              |  |
|-------------------|-------------|-------------------------------------------|--|
| cs.vu.nl          | SOA         | star (1999121502,7200,3600,2419200,86400) |  |
| cs.vu.nl          | NS          | star.cs.vu.nl                             |  |
| cs.vu.nl          | NS          | top.cs.vu.nl                              |  |
| cs.vu.nl          | NS          | solo.cs.vu.nl                             |  |
| cs.vu.nl          | TXT         | "Vrije Universiteit - Math. & Comp. Sc."  |  |
| cs.vu.nl          | MX          | 1 zephyr.cs.vu.nl                         |  |
| cs.vu.nl          | MX          | 2 tornado.cs.vu.nl                        |  |
| cs.vu.nl          | MX          | 3 star.cs.vu.nl                           |  |
| star.cs.vu.nl     | HINFO       | Sun Unix                                  |  |
| star.cs.vu.nl     | MX          | 1 star.cs.vu.nl                           |  |
| star.cs.vu.nl     | MX          | 10 zephyr.cs.vu.nl                        |  |
| star.cs.vu.nl     | A           | 130.37.24.6                               |  |
| star.cs.vu.nl     | A           | 192.31.231.42                             |  |
| zephyr.cs.vu.nl   | HINFO       | Sun Unix                                  |  |
| zephyr.cs.vu.nl   | MX          | 1 zephyr.cs.vu.nl                         |  |
| zephyr.cs.vu.nl   | MX          | 2 tornado.cs.vu.nl                        |  |
| zephyr.cs.vu.nl   | A           | 192.31.231.66                             |  |
| www.cs.vu.nl      | CNAME       | soling.cs.vu.nl                           |  |
| ftp.cs.vu.nl      | CNAME       | soling.cs.vu.nl                           |  |
| soling.cs.vu.nl   | HINFO       | Sun Unix                                  |  |
| soling.cs.vu.nl   | MX          | 1 soling.cs.vu.nl                         |  |
| soling.cs.vu.nl   | MX          | 10 zephyr.cs.vu.nl                        |  |
| soling.cs.vu.nl   | A           | 130.37.24.11                              |  |
| laser.cs.vu.nl    | HINFO       | PC MS-DOS                                 |  |
| laser.cs.vu.nl    | A           | 130.37.30.32                              |  |
| vucs-das.cs.vu.nl | PTR         | 0.26.37.130.in-addr.arpa                  |  |
| vucs-das.cs.vu.nl | Α -         | 130.37.26.0                               |  |

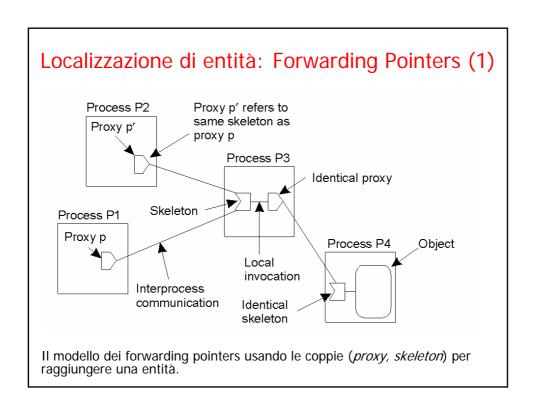
## DNS Implementation (2)

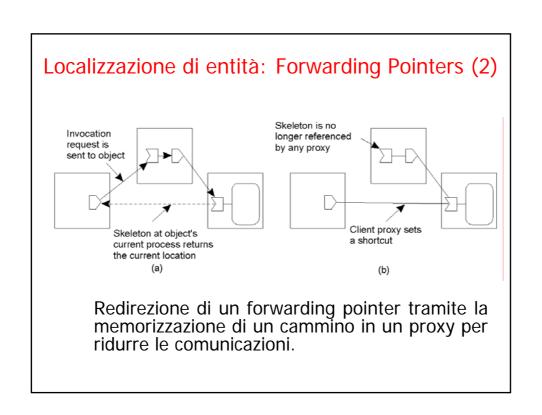

| Nome          | Record type | Record value  |
|---------------|-------------|---------------|
| cs.vu.nl      | NS          | solo.cs.vu.nl |
| solo.cs.vu.nl | Α           | 130.37.21.1   |

Parte della descrizione per il dominio *vu.nl* che contiene il dominio *cs.vu.nl* 

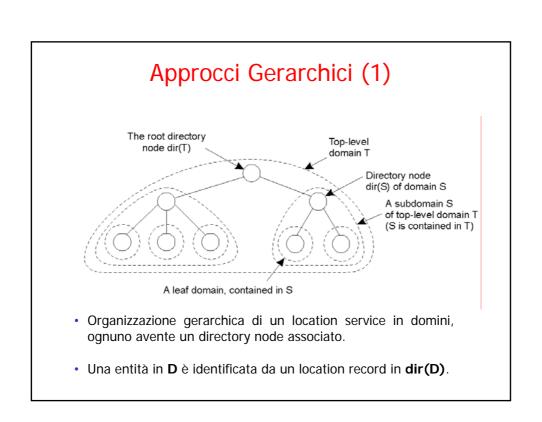
# Naming e Localizzazione di Entità

- Come gestire lo spostamento dei server in domini differenti?
  - Memorizzare l'indirizzo della nuova macchina nel DNS entry della vecchia macchina.
  - b) Memorizzare il nome della nuova macchina nel DNS entry della vecchia macchina.
- Un look up a più passi (multi-step) è necessario.

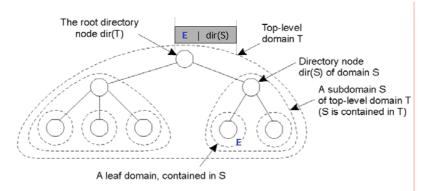

## Naming e Localizzazione di Entità




- a) Mapping diretto, singolo livello tra nomi e indirizzi
  - Non adatto a risorse mobili
- b) Mapping a due livelli usando identità
  - Flessibile e adatto a gestire risorse mobili

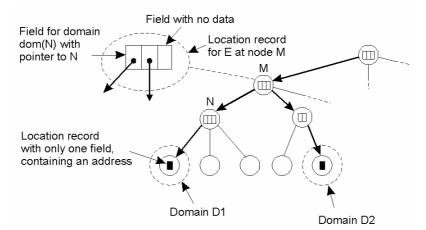

#### Localizzazione di entità: Broadcasting e Multicasting

- In una LAN con pochi nodi può essere usato il meccanismo di broadcasting.
  - Un identificatore di entità è inviato ad ogni macchina chiedendo il controllo del proprietario dell'entità.
- Quando il numero dei nodi è elevato può essere usato il meccanismo di multicasting.
  - Si definiscono dei gruppi di nodi e si inviano le richieste a tutti i nodi di un gruppo.



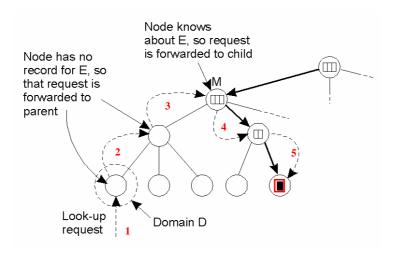




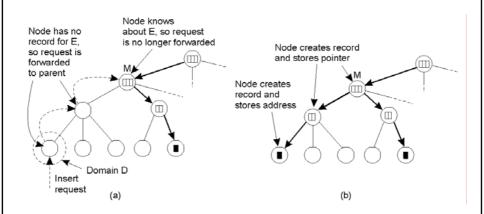

## Approcci Gerarchici (2)




- Un nodo radice di un sotto-albero contiene una entry per ogni entità
   E.
- Il location record contiene un puntatore al directory node del successivo sotto-dominio del livello più basso che contiene l'entità **E**.

## Approcci Gerarchici (3): Replicazione di entità

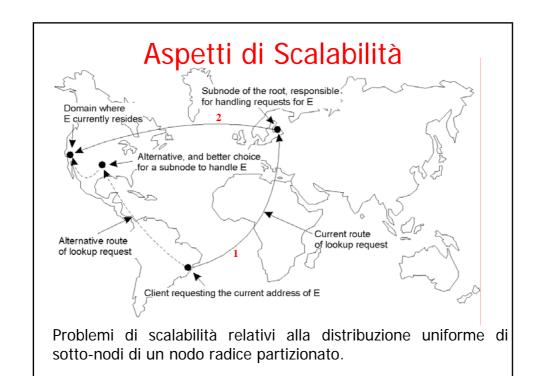



Un esempio di memorizzazione di informazione di una entità replicata che ha due indirizzi in differenti domini foglie.

## Approcci Gerarchici (4): richiesta di accesso

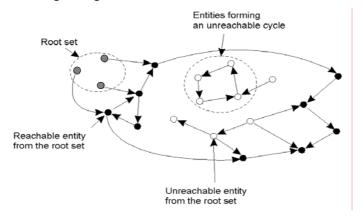


Accesso ad una locazione in un location service organizzato gerarchicamente.


## Approcci Gerarchici (5): richiesta di inserimento

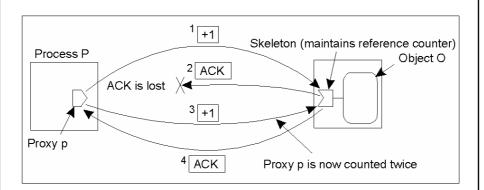


- a) Una *insert* request è inviata al primo nodo che conosce l'entità *E*.
- b) Viene creata una catena di forwarding pointers fino al nodo foglia.


## Aspetti di Scalabilità

- In un servizio di locazione gerarchico il nodo radice deve memorizzare le entry per tutte le entità.
- Il nodo radice può diventare il collo di bottiglia del sistema.
- Può essere partizionato in un insieme di nodi che gestiscono un sottoinsieme di entità.
- Trovare il modo migliore per localizzare i nodi è molto complesso.




# Problema di oggetti non referenziati

Soluzione: garbage collector distribuito.



Un esempio di un grafo che rappresenta oggetti contenenti riferimenti ad ogni altro. I nodi bianchi dovrebbero essere rimossi.

## Reference Counting



Il problema di mantenere un corretto conteggio dei riferimenti in presenza di comunicazione non affidabile: identificazione di messaggi duplicati.

# Reference Listing

- Il questo modello non si tiene conto del numero di riferimenti ma si mantiene una lista dei riferimenti.
- Questo approccio non richiede comunicazioni affidabili perché:
  - Aggiungere un un riferimente esistente non ha alcun effetto sulla lista.
  - Togliere un riferimento non esistente non ha alcun effetto sulla lista.
- Il Reference Listing è usato in Java RMI: un processo invia il suo riferimento ad un oggetto remoto e l'oggetto aggiunge il processo alla sua reference list.