

Super Actors for Real Time

G. Fortino, L. Nigro*, F. Pupo, D. Spezzano
Laboratorio di Ingegneria del Software

Dipartimento di Elettronica, Informatica e Sistemistica
Università della Calabria, I-87036 Rende (CS), Italy

*
Corresponding author - phone: +39-0984-494748, l.nigro@unical.it

Abstract

This paper proposes a novel approach –SART- to the
development of real-time systems which is based on super
actors, i.e., actors whose behaviour is modelled by
statecharts. SART borrows structural concepts from
known methods for reactive systems like ROOM and
UML-RT, and favours ease of construction by making
actors reusable and composable software components.

The distinguishing factors of SART are its
modularisation of timing constraints and customisable
scheduling algorithm. Application actors are not aware of
timing requirements. RTsynchronizers capture timing
constraints in groups of actors, filter relevant messages
and control their scheduling. Time clauses of causally
connected messages in system interactions are directly
derived from the declarative specification of end-to-end
timing constraints. SART supports both prototyping and
real-time execution modes.

A SART graphical development environment
supporting modelling, temporal property checking and
code generation has been implemented in Java.

1. Introduction

The aim of this work is to provide a methodology –
SART- and a graphical environment for modelling,
prototyping and implementation of distributed real-time
(RT) systems. SART is centred on the concept of super
actors whose behaviour is specified by statecharts [1].
Although several and powerful modelling languages and
visual tools based on statecharts have been proposed for
RT systems, e.g., ROOM [2], STATEMATE [3], UML-
RT [4], this work claims that the explicit support of
timing constraints, which are essential for RT design,
from the viewpoints of specification, validation and
enforcement, remains unsatisfactory. There is normally a
semantic gap between high-level development phases and
low-level final implementation phases of a project where a
modelled system is ultimately managed by a real-time
operating system whose (hidden) scheduling algorithm,

normally through priority and pre-emption, is responsible
for the fulfilment of all the timing requirements. A high-
level notation often only makes it possible to constrain an
activity with the passage of time through a timer concept,
this is of limited effect for dealing with system reactions
to external stimuli [5]. Recently [6] some constructs have
been proposed for UML-RT for the purposes of specifying
and analysing end-to-end timing constraints in system
response.

The approach adopted in SART and described in this
paper is novel in that it favours timing predictability by
integrating an application with its runtime executive. The
key feature of SART is modularisation of timing
constraints [5]. Application actors are not aware of timing
constraints. RTsynchronizers [7-9] are introduced which
capture timing clauses of individual events in system
reactions and regulate its message-based scheduling.
Rtsynchronizers are derived from a synthesis algorithm
[10-12] which operates on an RTL-like [12] specification
of the timing constraints. The modelling language of
SART is close to existing notations, particularly the
component-based architecture of ROOM and UML-RT.
Actors are developed as reusable components which can
be linked to one another by interface ports with associated
input/output messages to generate new components and so
forth. Specific contributions of SART are: (a) a timing
constraints synthesis and mechanization of
Rtsynchronizers; (b) a customisable scheduling algorithm;
(c) a concept for modularising groups of actors (as a
subsystem or cluster) on the basis of shared timing
interactions and constraints; (d) a minor simplification to
the statecharts formalism which improves modeller
activities; (e) a system life cycle which unites modelling,
analysis, design and implementation phases; (f) a
graphical development environment which enables system
modelling, property checking by prototyping/simulation,
and automatic code generation in Java.

This paper gives an overview to SART by describing
its computational model, modelling language and
management of timing constraints. Finally, the
implementation status together with an indication of
ongoing work are briefly discussed in the conclusions.

2. Computational Model

SART represents an eclectic approach. It follows the

ideas of the Modelling Dimensions Paradigm [2] and
builds on concepts developed within the community of the
Actors model [14,9,15,5]. The approach is three-
dimensional and focuses on Structure, Behaviour and
Timing Constraints which can separately be dealt with
during a project.

A UML-like style is adopted for modelling the
structure and behaviour of the components of a system.
The behavioural part of components can be hierarchical
organized according to a statecharts formalism. Actor
components only provide functional issues, i.e., the
actions for responding to incoming messages.

Rtsynchronizers [7-9,15,12], i.e., specialised actors, are
responsible of the timing issues in group of actors and
have a reflective link with scheduling. Actors
communicate to one another by asynchronous message
passing. An actor responds to a message by making a state
transition and executing an action. Action execution is
atomic. Actors are non thread objects. They are at rest
until a message arrives. After responding to a message,
the actor is ready to accept the next message etc.

Actors can be grouped into clusters. Each cluster is
governed by a control machine which provides the basic
scheduling and dispatching activities. Actor concurrency
within a cluster is co-operative and not pre-emptive. Each
cluster can be allocated to a distinct network node of a
distributed system. Messages represent the scheduling
units. They transparently have timing constraints
associated with them by Rtsynchronizers thus affecting
the message selection and delivery process.

The basic actor architecture is summarised in Figure 1.
The resultant architecture purposely avoids any
dependency on a predefined RT OS and associated
concurrency control mechanisms.

Figure 1: Basic actor architecture

3. Modelling Language

The SART modelling language was influenced by

known notations of ROOM[2] and UML-RT[4],
particularly for the structural and behavioural aspects. For
instance, the actor component closely corresponds to the
capsule of UML-RT. The following outlines the
modelling language by focussing on the differences
introduced with respect to existing notations.

3.1 Structure

A system consists of a set of interconnected actors (see
Figure 1). As in ROOM and UML-RT, actors have an
interface of typed ports. A port is characterised by the set
of messages which can flow through it. Messages can be
input or output and can carry data parameters. For
simplicity, ports have no protocol rules. Two ports P1 and
P2 with respectively input messages I1 and I2 and output
messages O1 and O2 can be linked to one another if they
have compatible messages, i.e., O1⊆ I2 and O2⊆ I1.

Component based design is supported by having actors
which are turned into reusable components which can be
interconnected to generate new actors and so forth. To
facilitate actor aggregation the concept of relay ports and
behaviour (or end) ports are introduced as in ROOM.
Actor aggregation with behaviour specialization can be
used to simulate actor inheritance. Reusable actors can be
imported from a library and be instantiated in different
projects. However, no primitive notion of array of actors is
provided. Structural aspects of an actor include a data
environment, possibly hierarchical structured, which can
only be modified by responding to messages on the basis
of the rules expressed by the actor behaviour.

3.2 Behaviour

The dynamic behaviour of an actor is modelled by
statecharts [1] according to the or-decomposition style
like in ROOM [2] (see Figure 6). From time to time an
actor can find itself into one of a set of disjoint states.
However, state hierarchy implies that at a given instant in
time the actor resides in a state and all of its enclosing
(super) states up to the top state. Concurrency is supported
at the actor level not within states (and-decomposition).
All of this complies with the adopted actor computational
model and the basic goal of achieving a timing predictable
framework intended to be mechanically transformed from
graphical specification into design and implementation.
In addition asynchronous point-to-point message passing
is used instead of shared data and broadcast
communications.

Several minor modifications/additions were considered
to the graphical modelling of statecharts. Although they
do not add expressive power to the formalism, they can be

5WV\QFKURQL]HU

5WV\QFKURQL]HU

&RQVWUDLQW

 GLUHFWHG
6FKHGXOHU

$FWRU $FWRU $FWRU

&RQWURO

 0DFKLQH

useful for incremental development. Besides the
elimination of fork/join pseudo states relevant to and-
decompositions, also the pseudo state end state is removed
since in the assumed actor model every state can behave
as an end state. The pseudo states start state, shallow
history (H) and deep history (H*) are retained unchanged.
States can be macro states (or super states) to permit
decomposition, leaf states otherwise. State diagrams
follow the Mealy style with transitions which are labelled,
in general, by the trigger message, the associated guard
and the corresponding action which is executed when the
transition fires. In addition, as in ROOM, an entry action
and an exit action can possibly be added to every state.
Through a convenient use of conditions it can be
simplified the drawing of transitions between internal
states of macro states and external states and vice versa.
Figures 2 to 4 exemplify the effect of transition rewriting
between macro states. The final result is that any such a
transition can always be drawn between macro states, thus
eliminating chain states [4] and facilitating the stepwise
refinement of macro states.

Figure 2: Transition rewriting 1, a) original, b) modified

Figure 3: Transition rewriting 2, a) original b) modified

The concept of immediate transition has been

introduced which makes it possible to eliminate branch-
states. However its use is general. An immediate

transition is one which after being executed directly
consigns its triggering event to the reached state which
immediately processes it (without scheduler intervention).
Immediate transitions simplify the description of
exceptional events or interrupts, by avoiding the
generation of unnecessary messages. Branch state
elimination is illustrated in Figure 5.

Figure 4: Transition rewriting 3, a) original b) modified

 a) b)

Figure 5: Branch state (B) elimination a) original b) modified

Another minimal added feature concerns the use in

macro states of multiple input transitions (e.g., see Fig.
3b), each with an associated guard condition, exiting from
a start state, with a default transition which is taken when
no other guard evaluates to true. Figure 6 portrays the
shape of a typical SART actor behaviour.

Figure 6: An actor state hierarchy

M sg, C o n d /ac t io n ()

a)

M sg, C o n d & & v /act io n ()
e:v=true ;

v=fa lse;

b)

M sg, C o n d /ac t io n ()

a)

M sg, C o n d /act io n (); v = tru e ;

b)

(v == t rue)

e:v=fa lse;

a) b)

M sg, Co n d /actio n A ();

B

C o n d 1/actio n 1(); C o n d 2/actio n 2();

M sg, Co n d /actio n A (); IM M E D IA T E

M sg, C o n d 1/actio n 1(); M sg, C o n d 2/actio n 2();

Msg, Cond/action(); v = = true /v=false; actions()

Msg,Cond/v=true;

S11

S12
m1

m2

m1 m3

S1

S2

S

m4
 S22

S21

m5

m5, IMM

condition1

H *

A

B

< S A ,P A , D A >

[L b ..U b]

< S B , P B ,D B >

Messages m1, m4 and m5 are triggers of group
transitions. However, whereas an occurrence of m1 or m5
forces the relevant macro state to be entered through its
pseudo start state, an m4 occurrence corresponds to an
interrupt. After some computation (action associated to
m4 transition), control re-enters (deep history) the state
within S which was left off at the time of m4 arrival.
Message m5 triggers an immediate transition. The
internal state of S2 (S21 or S22) selected by the enabled
input transition is then given the immediate chance of
process message m5. When a message is received in a
state which is unable to provide a response to it (e.g., the
arrival of m4 when it is current S11 of S1), it is
propagated to its immediately enclosing super state (e.g.,
S1) and so forth until either a response is available (e.g.,
in the top state S) or the message is eventually rejected.
Figure 6 exemplifies the concept of transition overriding.
When current (sub) state is S11 of S1 and message m1
arrives, the internal transition in S1 is chosen instead of
the group transition of S1.

3.3 Timing Constraints

SART maintains a separation of concerns for meeting
the functional and real-time requirements of a system.
Functional requirements are dealt with by drawing actor
structure and behaviour. Timing constraints existing in
system reactions are separately modelled through a
declarative style which was inspired by the Real Time
Logic (RTL) [13,10-11] formalism. The notation naturally
adhers to the event-driven actor computational model and
the role of actions, i.e., atomic message processing, which
provide functions and represent the scheduling units. The
concept of temporal activity diagram (TAD) was
introduced for capturing the causal effect relationship
among events (or messages) and the associated timing
information. TADs are message-based threads of control
and serve for the synthesis of timing constraints, i.e.,
deriving the time clauses for all the involved events in
system reactions. They also help checking/fixing timing
violations and support the mechanical construction of
Rtsynchronizers which impose timing constraints to
messages during runtime. The validation of system
temporal properties is in any case deferred to a subsequent
prototyping/simulation of the modelled system, where the
effect of interleaving multiple system reactions can be
observed under different load conditions. In the following,
a discrete domain of global real time will be assumed.
 A TAD is a graph model where nodes are associated to
event occurrences and directed edges mirror the causal
relationship among events. Each TAD is drawn for a
single reaction. Both nodes and edges are annotated with
temporal information (see Figure 7). An event node
carries a triple <start time, processing time, deadline>.

An edge is attached a time interval [Lb..Ub], Lb≤Ub, which
can express, e.g., in a distributed framework, a delay (or
transfer time) in the occurrence of a caused event since
the occurrence of the corresponding source event. In
Figure 7 node A has starting time SA, computation time
PA and deadline DA whereas node B has the
corresponding parameters SB, PB and DB. By convention,
an edge without any annotation has time interval [0..0]
(instantaneous causal event connection); a single time
value d is equivalent to [d..d]. Figure 7 shows the basic
precedence construct in TAD’s and corresponds to the <,
≤ RTL operators. It states that action B is caused by action
A and that, in RTL terms, (↑B≥↓A+Lb)∧ (↑B≤↓A+Ub),
where symbol ↑ indicates event starting and ↓ event
ending. In other words, ↓A+Lb≤SB≤↓A+Ub. Other
primitive constructs are summarised in Figure 8.
However, to facilitate the construction of TAD’s some non
primitive constructs can also be used which are short cuts
of basic constructs interconnection. The most common
abbreviations are portrayed in Figure 9. They are
respectively associated to a group of events which are
spawned by a same source (RTL ∧ /∨ operators) and the
case of a single event which acts as the synchronization
point of a group of causal events. The first one can have
the AND logic or the OR/XOR interpretation. In Figure
9b) only the AND equivalence is shown, it is based on the
equality node followed by the spawned concurrent actions.
However, the use of conditions on the spawned actions
can make the outgoing branches OR paths like in Figure
8d) or XOR paths where only one branch is actually
followed depending on the value of the conditions (see
Figure 10 for an example).

Figure 7: Basic TAD precedence construct

a) Equality node, ↓A∧↓ B b) Equality node,↑A==↑B

Figure 8: Other primitive TAD constructs

A B

A B

c) Operator > (or ≥)

↑A>↑B (↑A≥↑B)

d) Operator ∨

↓A<↑B ∨ ↓C<↑B

Figure 8: Other primitive TAD constructs (continued)

a) Spawning b) Spawning AND equivalence

c) Synchronization d) Synchronization equivalence

Figure 9: Non primitive TAD constructs

 It is worth noting that the existence of TAD constructs
for both <, ≤, and >, ≥ RTL operators conveniently avoids
considering negative relative times in timing inequalities
during declaration and synthesis of timing constraints.
 A group of events not related by precedence
constraints but only on the global time, e.g., A+B+C<T,
can be re-written simply as ↓A<T∨↓ B<T∨↓ C<T without
considering the 3! possible cases implied by the original
expression. All of this is a consequence of the underlying
scheduling model which guarantees events are selected
according to their timing windows, supposed these timing
windows are admissible.
 The timing constraints synthesis algorithm operates on
the collection of TAD’s which describes the temporal
behaviour of a system. TAD’s are initially annotated by
start time and deadline in input nodes, which trigger

system reactions, and the processing time in every other
event node. Processing times can possibly be omitted in
early analysis but must be included for final calculation of
time clauses. Start time and deadline of remaining nodes
are respectively assigned the default value of 0 and ∞. The
algorithm basically propagates timing windows from
input nodes down to causally dependent nodes (forward
propagation).
 Referring to the primitive precedence construct in
Figure 7 the propagation rules are the following:

SB=max(SA+PA+Lb, SB)
DB=min(DA+Ub, DB)

However, the presence of equality nodes as in Figure

8a) can require a backward propagation. If <SEQ,0,DEQ>
is the time window associated to the equality node, and
DA and DB are the deadlines of incident nodes A and B,
the backward propagation rule simply assigns to nodes A
and B the deadline of the equality node: DA=DEQ,
DB=DEQ.

 The following exemplifies an application of TADs to a
typical control system consisting of four actors: a Sensor,
an Actuator, a Display and a Controller. The Sensor
samples data from the external environment every 50 time
units (TU) and transmits it to the Controller which must
react through the Actuator with either a normal or an
emergency response but not both within 45 TU after
receiving the data.
 Two TAD’s respectively associated to normal response
and emergency response are portrayed in Figure 10. They
share the Data Sampling (DS) node. The Controller
selects the response’s TAD by a data check (Cond) carried
in the Transmit Data (TD) action. In the normal TAD the
data are displayed on a user screen whose background is
prepared (Display Preparation, DP) while the Controller
makes Data Analysis (DA). After both DP and DA, the
analyzed data are actually displayed (Data Display, DD)
and finally the Normal Response (NR) is generated. In the
emergency TAD data are only analyzed (DA) and then the
Emergency Response (ER) is provided. Normal and
emergency TAD’s are annotated by the assumed
processing times and the required deadline (see the edges
DS-TD). Time information in Figure 10 is relative to the
initial instant of the sampling data.
 It is worthy of note that each TAD implicitly follows
the universal ∀ operator of RTL. Indeed, each time the
DS event occurs, the temporal activity is re-started from
its beginning and the relative time is purposely reset as
usually is useful when modeling periodic system
reactions. The Sensor actor is assumed to have a
functional behavior where the DS message is self-sent
after being received.

B

A

[b1..b2]

A

B

[a1..a2]

C

B

[c 1..c2]

[b1..b2] [c 1..c2]

A

B C

[a1..a2] [b1..b2]

A B

C

[a 1..a 2] [b 1..b 2]

A B

C

[b 1 ..b 2] [c 1 ..c 2]

A

B C

Figure 10: TAD’s for the example control system

 Applying the synthesis algorithm to Figure 10 will
update the timing constraints as shown in the Figure 11.
The time window of DD node is the result of left and right
propagation paths. Although the left propagation path
would associate the window <18,15,50>, the right path,
according to the propagation rules, replaces it with the
final window <38,15,50>.

Figure 11: Effect of the application of the synthesis algorithm

Given the initial time parameters, Figure 11 clearly
reports a failure in fulfilling the deadline during a normal
response, since NR starts at 53 and doesn’t end until 63.
Therefore, either the sampling period should be
augmented or the processing time of critical actions (e.g.,
DA) must be shortened or the both.

3.3.1 Mechanization of Rtsynchronizers
 An Rtsynchronizer is a special purpose actor which
transparently interfaces a group of controlled application
actors with the runtime executive (scheduler). It gets
involved and carries actions at both the send time and the
dispatch (receive) time of a message. To exemplify, at the
send time of a message M the usual action executed by the
Rtsynchronizer is the following:

if(message is M && condition)
 schedule(M with M’time window);

where M is assumed to be sent by a sender actor which
associates to it a given condition (e.g., stating the current
internal state of the sender). The time window of M is
defined by the synthesis of the timing constraints
described in section 3.2. At dispatch time, the
Rtsynchronizer can memorize the occurrence time of the
message and so forth.
 The behaviour of a Rtsynchronizer is a flat state model
and consists of a single state with self transitions labelled
by relevant Condition/Action pairs. As a consequence, the
design of Rtsynchronizers can be mechanized. The actual
Temporal Activity Diagram (TAD) modelling language of
SART, as supported by the graphical environment, helps
automating the derivation of Rtsynchronizers by using the
modelling objects portrayed in Figure 12.

Figure 12: Temporal Activity Diagram graphical notation

Sender Synchro
Sender Condition

Receiver Synchro

Sender Action
Receiver Condition
Receiver Action

EVENT NAME

StartTime ProcessingTime Deadline

Activity Node

[LowerBound .. UpperBound]

Activity Edge

Reset Node

Equality Node

DS

TD TD Cond ! Cond

DP
 D A DA

DD ER

NR

<0,5,5>

[0..45] [0..45]

<0,8, ∞ >

<0,10, ∞ >

<0,10, ∞ >

<0,25, ∞ > <0,5, ∞ >

<0,15, ∞ >

<0,10, ∞ >

<0,8, ∞ >

 DS

TD TD Cond ! Cond

DP DA DA

DD ER

NR

<0,5,5>

[0..45] [0..45]

<5,8,50>

< 13,10,50 >

< 23,10,50 >

<13 ,25, 50 > < 5 ,5, 50 >

< 38 ,15, 50 >

< 53,10,50 >

<5,8,50>

 The Activity Node describes an event/action
occurrence node in a TAD and specifies, besides the event
name and the associated time window, the names of the
sender/receiver Rtsynchronizers. As a particular case the
two can be a same Rtsynchronizer. The relevant pairs
Condition/Action are reported for the two synchronizers.
The expression of the Condition and the Action relies on
a high-level programming language (e.g., Java). The
Activity Edge is accompanied by the time interval
required by the timing constraints propagation algorithm.
The Reset Node can be useful in complex TAD’s for
explicit reset of the relative time marking the starting of a
sub-activity.

3.4 Scheduling

A key factor of SART is its ability to work with a
custom scheduling algorithm. Since the absence of pre-
emption, finding in general the optimal schedule for the
event set of a SART system is a well-known NP-hard
problem. Therefore, concrete schedulers can be achieved
by using some heuristics at runtime, i.e., at each message
send. In order to characterize the implementation of one
such a scheduler, the following terms are useful (see
Figure 13). At a given instant in time n messages (events)
are pending within the scheduler. Let tsi be the start time,
ti the effective starting time, di the deadline and pi the
processing time of a message mi.

Figure 13: Message timing constraint representation

The chosen heuristic is based on the following precedence
relation “/” between messages:

mi / mj ⇔ di-pi < tsj+pj

Indeed (see Figure 14), would it be true the timing
inequality between mi and mj, choosing mj would forbid
mi from meeting its timing constraint. The “/”
precedence relation makes it possible to reduce the
number of precedence constraints in the formal definition
of the makespan optimisation problem. The scheduler
dynamically selects the “most critical” pending message
for dispatching, i.e., that one which has minimum di-pi.

Operatively, the implemented scheduler uses two lists:
LD and LS. LD stores messages ranked by ascending di-pi,
i.e., the maximum admissible delay for mi. LS is kept
ranked by ascending tsj+pj, i.e., the minimum end time for
message mj. The algorithm first builds the candidate set

SC made up of messages in LS which have rank less than
LD’first. In the case SC has one element, this one
constitutes the dispatch message. If SC is empty, the
dispatch message coincides with LD’first (a decision EDF
like). If SC has more than one element, the message is
selected (this is just one possibility) which has minimum
tS. This choice reduces the idle times of the CPU and
contributes to shortening the overall cost function of the
optimisation problem.

Figure 14: Precedence relation between messages

The scheduler algorithm can also be adapted to operate

in simulation mode, with time which is explicitly
advanced at message dispatching and with worst-case
processing times which are assumed for messages. The
prototyping/simulation execution mode is useful for
checking timing constraints in the presence of multiple
and conflicting system reactions. The application remains
basically the same whereas several scenarios (load
conditions) can be considered for driving the temporal
testing phase.

4. Conclusions

The development of real-time systems can greatly
benefit from the software engineering advantages of
powerful modelling languages based on component-based
design and statecharts. However, to be effective, a
notation should allow the explicit specification of and
reasoning on the timing constraints which exist in system
reactions and thus determine the design. SART is an
eclectic approach presented in this paper which borrows
structure and behaviour concepts from state of the art
modelling languages like ROOM [2], STATEMATE [3]
and UML-RT [4] and integrates them with a timing
framework which depends on an RTL [13] graphical style
of timing constraints specification, Rtsynchronizers [7-9]
and custom scheduling are used for the analysis and
enforcement of the timing requirements.

SART has a synthesis tool which is able to
propagate/analyse timing information within the message-
based thread of control which constitutes a system

 t Si t i d i

p i

 time

time

message j t Sj

d i

p i

message i

p j

reaction and thus automate the generation of
Rtsynchronizers.

A toolset in Java2 has been designed which delivers a
full system life cycle based on SART. Functional and
temporal modelling, property validation through
simulation and implementation with automatic generation
of Java code are supported. The various phases of a
system development are united in terms of the common
underlying actor representation. This in turn minimises
the risks of introducing errors when transforming a
specification into a final implementation. Separate but
integrated tools are provided for:
(a) designing the structure of actors and their port

interconnections to form new components or
systems;

(b) modelling actor behaviours through proposed
statecharts;

(c) specifying timing constraints in system activities and
mechanizing the production of Rtsynchronizers;

(d) linking Rtsynchronizers to actors also in the context
of a distributed implementation of the system.

 Each tool can generate independent code. An
implemented system can use a reduced Java Virtual
Machine where, for instance, garbage collection is
avoided by having messages which are collected into
reusable pools from where they are picked-up on demand
without necessarily using the new operator. In addition,
only one Java thread is used to support the scheduler
operation and the atomic execution of actions in actors.

On-going work is directed at improving the toolset and
completing it with a support for distribution aspects and
to experiment with the use of the developed tools in
complex real-time system design.

Acknowledgments

The authors wish to thank Brian Kirk for the helpful
discussions during the preparation of the paper.

References

[1] Harel D. (1987). Statecharts: a visual formalism

for complex systems. Science of Computer
Programming 8, pp. 231-274.

[2] Selic B., G. Gulleckson and P.T. Ward (1994).
Real-time object-oriented modelling. Wiley.

[3] Harel D. and M. Politi (1998). Modeling reactive
systems with statecharts. McGraw-Hill.

[4] Selic B. and J. Rumbaugh (1998). Using UML for
modelling complex real-time systems. http://
www.ObjecTime.com/otl/technical, ObjecTime
Limited.

[5] Kirk B., L. Nigro and F. Pupo (1997). Using real
time constraints for modularisation. Lecture Notes
in Computer Science, 1204, Springer-Verlag, pp.
236-251.

[6] Hermeling M., O. van Roosmalen and B. Selic
(1999). Timing constraints and object-oriented
design. Proc. of 24th IFAC/IFIP Workshop on Real
Time Programming (WRTP’99), pp. 15-20.

[7] Ren, S., Agha, G. (1995): Rtsynchronizer:
language support for real-time specification in
distributed systems. ACM SIGPLAN Notices, 30,
pp. 50-59.

[8] Saito, M., Agha, G. (1995): A modular approach to
real-time synchronisation. In Object-Oriented
Real-Time Systems Workshop, OOPS Messenger,
ACM SIGPLAN, 1995.

[9] Agha, G. (1996): Abstracting interaction patterns:
a programming paradigm for open distributed
systems. Formal Methods for Open Object-based
Distributed Systems, Vol. 1, (Najm E. and Stefani
J. B., Eds.), Chapman & Hall.

[10] Mok A. K. (1991). Towards mechanization of real-
time system design. In Foundation of real-time
computing: formal specification and methods,
(A.M.V. Tilborg and G.M. Koob, Eds.), Kluwer
Academic Publishers, pp. 1-38.

[11] Tsai J.J.P., S.J. Yang, Y.-H. Chang (1995). Timing
constraint Petri nets and their application to the
schedulability analysis of real-time specifications.
IEEE Trans. Soft. Eng., 21(1), pp. 32-49.

[12] Nigro L. and F. Pupo (2000). Schedulability
analysis of real time actor systems using Coloured
Petri Nets. To appear in Advances in Petri Nets
series of Lecture Notes in Computer Science,
special volume Concurrent Object-Oriented
Programming and Petri Nets (G. Agha, F. De
Cindio and G. Rozenberg Eds.)

[13] Jahanian F. and A. K. Mok (1986). Safety analysis
of timing properties in real-time systems. IEEE
Trans. Soft. Eng., 12(9), pp. 890-904.

[14] Agha G. (1986). Actors: A model for concurrent
computation in distributed systems. MIT Press.

[15] Nielsen B., S. Ren and G. Agha (1998).
Specification of real-time interaction constraints.
Proc. of First Int. Symposium on Object-Oriented
Real-Time Computing, IEEE Computer Society.

