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Abstract 
 

This paper proposes a novel approach –SART- to the 
development of real-time systems which is based on super 
actors, i.e., actors whose behaviour is modelled by 
statecharts. SART borrows structural concepts from 
known methods for reactive systems like ROOM and 
UML-RT, and favours ease of construction by making 
actors reusable and composable software components. 

The distinguishing factors of SART are its 
modularisation of timing constraints and customisable 
scheduling algorithm. Application actors are not aware of 
timing requirements. RTsynchronizers capture timing 
constraints in groups of actors, filter relevant messages 
and control their scheduling. Time clauses of causally 
connected messages in system interactions are directly 
derived from the declarative specification of end-to-end 
timing constraints. SART supports both prototyping and 
real-time execution modes.  

A SART graphical development environment 
supporting modelling, temporal property checking and 
code generation has been implemented in Java. 
 
1. Introduction 
 

The aim of this work is to provide a methodology –
SART- and a graphical environment for modelling, 
prototyping and implementation of distributed real-time 
(RT) systems. SART is centred on the concept of super 
actors whose behaviour is specified by statecharts [1]. 
Although several and powerful modelling languages and 
visual tools based on statecharts have been proposed for 
RT systems, e.g., ROOM [2], STATEMATE [3], UML-
RT [4], this work claims that the explicit support of 
timing constraints, which are essential for RT design, 
from the viewpoints of specification, validation and 
enforcement, remains unsatisfactory. There is normally a 
semantic gap between high-level development phases and 
low-level final implementation phases of a project where a 
modelled system is ultimately managed by a real-time 
operating system whose (hidden) scheduling algorithm, 

normally through priority and pre-emption, is responsible 
for the fulfilment of all the timing requirements. A high-
level notation often only makes it possible to constrain an 
activity with the passage of time through a timer concept, 
this is of limited effect for dealing with system reactions 
to external stimuli [5]. Recently [6] some constructs have 
been proposed for UML-RT for the purposes of specifying 
and analysing end-to-end timing constraints in system 
response.  

The approach adopted in SART and described in this 
paper is novel in that it favours timing predictability by 
integrating an application with its runtime executive. The 
key feature of SART is modularisation of timing 
constraints [5]. Application actors are not aware of timing 
constraints. RTsynchronizers [7-9] are introduced which 
capture timing clauses of individual events in system 
reactions and regulate its message-based scheduling. 
Rtsynchronizers are derived from a synthesis algorithm 
[10-12] which operates on an RTL-like [12] specification 
of the timing constraints. The modelling language of 
SART is close to existing notations, particularly the 
component-based architecture of ROOM and UML-RT. 
Actors are developed as reusable components which can 
be linked to one another by interface ports with associated 
input/output messages to generate new components and so 
forth. Specific contributions of SART are: (a) a timing 
constraints synthesis and mechanization of 
Rtsynchronizers; (b) a customisable scheduling algorithm; 
(c) a concept for modularising groups of actors (as a 
subsystem or cluster) on the basis of shared timing 
interactions and constraints; (d) a minor simplification to 
the statecharts formalism which improves modeller 
activities; (e) a system life cycle which unites modelling, 
analysis, design and implementation phases; (f) a 
graphical development environment which enables system 
modelling, property checking by prototyping/simulation, 
and automatic code generation in Java. 

This paper gives an overview to SART by describing 
its computational model, modelling language and 
management of timing constraints. Finally, the 
implementation status together with an indication of 
ongoing work are briefly discussed in the conclusions. 



2. Computational Model 
 
SART represents an eclectic approach. It follows the 

ideas of the Modelling Dimensions Paradigm [2] and 
builds on concepts developed within the community of the 
Actors model [14,9,15,5]. The approach is three-
dimensional and focuses on Structure, Behaviour and 
Timing Constraints which can separately be dealt with 
during a project.  

A UML-like style is adopted for modelling the 
structure and behaviour of the components of a system. 
The behavioural part of components can be hierarchical 
organized according to a statecharts formalism. Actor 
components only provide functional issues, i.e., the 
actions for responding to incoming messages.  

Rtsynchronizers [7-9,15,12], i.e., specialised actors, are 
responsible of the timing issues in group of actors and 
have a reflective link with scheduling. Actors 
communicate to one another by asynchronous message 
passing. An actor responds to a message by making a state 
transition and executing an action. Action execution is 
atomic. Actors are non thread objects. They are at rest 
until a message arrives. After responding to a message, 
the actor is ready to accept the next message etc.  

Actors can be grouped into clusters. Each cluster is 
governed by a control machine which provides the basic 
scheduling and dispatching activities. Actor concurrency 
within a cluster is co-operative and not pre-emptive. Each 
cluster can be allocated to a distinct network node of a 
distributed system. Messages represent the scheduling 
units. They transparently have timing constraints 
associated with them by Rtsynchronizers thus affecting 
the message selection and delivery process.  

The basic actor architecture is summarised in Figure 1. 
The resultant architecture purposely avoids any 
dependency on a predefined RT OS and associated 
concurrency control mechanisms. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 1: Basic actor architecture 

3. Modelling Language 
 
The SART modelling language was influenced by 

known notations of ROOM[2] and UML-RT[4], 
particularly for the structural and behavioural aspects. For 
instance, the actor component closely corresponds to the 
capsule of UML-RT. The following outlines the 
modelling language by focussing on the differences 
introduced with respect to existing notations. 
 
3.1 Structure 

A system consists of a set of interconnected actors (see 
Figure 1). As in ROOM and UML-RT, actors have an 
interface of typed ports. A port is characterised by the set 
of messages which can flow through it. Messages can be 
input or output and can carry data parameters. For 
simplicity, ports have no protocol rules. Two ports P1 and 
P2 with respectively input messages I1 and I2 and output 
messages O1 and O2 can be linked to one another if they 
have compatible messages, i.e., O1⊆ I2 and O2⊆ I1.  

Component based design is supported by having actors 
which are turned into reusable components which can be 
interconnected to generate new actors and so forth. To 
facilitate actor aggregation the concept of relay ports and 
behaviour (or end) ports are introduced as in ROOM. 
Actor aggregation with behaviour specialization can be 
used to simulate actor inheritance. Reusable actors can be 
imported from a library and be instantiated in different 
projects. However, no primitive notion of array of actors is 
provided. Structural aspects of an actor include a data 
environment, possibly hierarchical structured, which can 
only be modified by responding to messages on the basis 
of the rules expressed by the actor behaviour. 
 
3.2 Behaviour 

The dynamic behaviour of an actor is modelled by 
statecharts [1] according to the or-decomposition style 
like in ROOM [2] (see Figure 6). From time to time an 
actor can find itself into one of a set of disjoint states. 
However, state hierarchy implies that at a given instant in 
time the actor resides in a state and all of its enclosing 
(super) states up to the top state. Concurrency is supported 
at the actor level not within states (and-decomposition). 
All of this complies with the adopted actor computational 
model and the basic goal of achieving a timing predictable 
framework intended to be mechanically transformed from 
graphical specification into design and implementation. 
In addition asynchronous point-to-point message passing 
is used instead of shared data and broadcast 
communications.  

Several minor modifications/additions were considered 
to the graphical modelling of statecharts. Although they 
do not add expressive power to the formalism, they can be 
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useful for incremental development. Besides the 
elimination of fork/join pseudo states relevant to and-
decompositions, also the pseudo state end state is removed 
since in the assumed actor model every state can behave 
as an end state. The pseudo states start state, shallow 
history (H) and deep history (H*) are retained unchanged. 
States can be macro states (or super states) to permit 
decomposition, leaf states otherwise. State diagrams 
follow the Mealy style with transitions which are labelled, 
in general, by the trigger message, the associated guard 
and the corresponding action which is executed when the 
transition fires. In addition, as in ROOM, an entry action 
and an exit action can possibly be added to every state. 
Through a convenient use of conditions it can be 
simplified the drawing of transitions between internal 
states of macro states and external states and vice versa. 
Figures 2 to 4 exemplify the effect of transition rewriting 
between macro states. The final result is that any such a 
transition can always be drawn between macro states, thus 
eliminating chain states [4] and facilitating the stepwise 
refinement of macro states. 
 

Figure 2: Transition rewriting 1, a) original, b) modified 

 

Figure 3: Transition rewriting 2, a) original b) modified 

 
The concept of immediate transition has been 

introduced which makes it possible to eliminate branch-
states. However its use is general. An immediate 

transition is one which after being executed directly 
consigns its triggering event to the reached state which 
immediately processes it (without scheduler intervention). 
Immediate transitions simplify the description of 
exceptional events or interrupts, by avoiding the 
generation of unnecessary messages. Branch state 
elimination is illustrated in Figure 5. 
 
 
 
 
 
 
 
 
 

Figure 4: Transition rewriting 3, a) original b) modified 
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Figure 5: Branch state (B) elimination a) original b) modified 

 
Another minimal added feature concerns the use in 

macro states of multiple input transitions (e.g., see Fig. 
3b), each with an associated guard condition, exiting from 
a start state, with a default transition which is taken when 
no other guard evaluates to true. Figure 6 portrays the 
shape of a typical SART actor behaviour.  
 

 
Figure 6: An actor state hierarchy 
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Messages m1, m4 and m5 are triggers of group 
transitions. However, whereas an occurrence of m1 or m5 
forces the relevant macro state to be entered through its 
pseudo start state, an m4 occurrence corresponds to an 
interrupt. After some computation (action associated to 
m4 transition), control re-enters (deep history) the state 
within S which was left off at the time of m4 arrival. 
Message m5 triggers an immediate transition. The 
internal state of S2 (S21 or S22) selected by the enabled 
input transition is then given the immediate chance of 
process message m5. When a message is received in a 
state which is unable to provide a response to it (e.g., the 
arrival of m4 when it is current S11 of S1), it is 
propagated to its immediately enclosing super state (e.g., 
S1) and so forth until either a response is available (e.g., 
in the top state S) or the message is eventually rejected. 
Figure 6 exemplifies the concept of transition overriding. 
When current (sub) state is S11 of S1 and message m1 
arrives, the internal transition in S1 is chosen instead of 
the group transition of S1.  
 
3.3 Timing Constraints 

SART maintains a separation of concerns for meeting 
the functional and real-time requirements of a system. 
Functional requirements are dealt with by drawing actor 
structure and behaviour. Timing constraints existing in 
system reactions are separately modelled through a 
declarative style which was inspired by the Real Time 
Logic (RTL) [13,10-11] formalism. The notation naturally 
adhers to the event-driven actor computational model and 
the role of actions, i.e., atomic message processing, which 
provide functions and represent the scheduling units. The 
concept of temporal activity diagram (TAD) was 
introduced for capturing the causal effect relationship 
among events (or messages) and the associated timing 
information. TADs are message-based threads of control 
and serve for the synthesis of timing constraints, i.e., 
deriving the time clauses for all the involved events in 
system reactions. They also help checking/fixing timing 
violations and support the mechanical construction of 
Rtsynchronizers which impose timing constraints to 
messages during runtime. The validation of system 
temporal properties is in any case deferred to a subsequent 
prototyping/simulation of the modelled system, where the 
effect of interleaving multiple system reactions can be 
observed under different load conditions. In the following, 
a discrete domain of global real time will be assumed. 
 A TAD is a graph model where nodes are associated to 
event occurrences and directed edges mirror the causal 
relationship among events. Each TAD is drawn for a 
single reaction. Both nodes and edges are annotated with 
temporal information (see Figure 7). An event node 
carries a triple <start time, processing time, deadline>. 

An edge is attached a time interval [Lb..Ub], Lb≤Ub, which 
can express, e.g., in a distributed framework, a delay (or 
transfer time) in the occurrence of a caused event since 
the occurrence of the corresponding source event. In 
Figure 7 node A has starting time SA, computation time 
PA and deadline DA whereas node B has the 
corresponding parameters SB, PB and DB. By convention, 
an edge without any annotation has time interval [0..0] 
(instantaneous causal event connection); a single time 
value d is equivalent to [d..d]. Figure 7 shows the basic 
precedence construct in TAD’s and corresponds to the <, 
≤ RTL operators. It states that action B is caused by action 
A and that, in RTL terms, (↑B≥↓A+Lb)∧ (↑B≤↓A+Ub), 
where symbol ↑  indicates event starting and ↓  event 
ending. In other words, ↓A+Lb≤SB≤↓A+Ub. Other 
primitive constructs are summarised in Figure 8. 
However, to facilitate the construction of TAD’s some non 
primitive constructs can also be used which are short cuts 
of basic constructs interconnection. The most common 
abbreviations are portrayed in Figure 9. They are 
respectively associated to a group of events which are 
spawned by a same source (RTL ∧ /∨  operators) and the 
case of a single event which acts as the synchronization 
point of a group of causal events. The first one can have 
the AND logic or the OR/XOR interpretation. In Figure 
9b) only the AND equivalence is shown, it is based on the 
equality node followed by the spawned concurrent actions. 
However, the use of conditions on the spawned actions 
can make the outgoing branches OR paths like in Figure 
8d) or XOR paths where only one branch is actually 
followed depending on the value of the conditions (see 
Figure 10 for an example). 
 
 
 
 
 
 
 
 

Figure 7: Basic TAD precedence construct 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

a) Equality node, ↓A∧↓ B b) Equality node,↑A==↑B 
 

Figure 8: Other primitive TAD constructs 
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c) Operator > (or ≥) 

↑A>↑B (↑A≥↑B) 

d) Operator ∨  

↓A<↑B ∨  ↓C<↑B 

 
Figure 8: Other primitive TAD constructs (continued) 

 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

a) Spawning b) Spawning AND equivalence 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c) Synchronization d) Synchronization equivalence 
 

Figure 9: Non primitive TAD constructs 

 
 It is worth noting that the existence of TAD constructs 
for both <, ≤, and >, ≥ RTL operators conveniently avoids 
considering negative relative times in timing inequalities 
during declaration and synthesis of timing constraints.  
 A group of events not related by precedence 
constraints but only on the global time, e.g., A+B+C<T, 
can be re-written simply as ↓A<T∨↓ B<T∨↓ C<T without 
considering the 3! possible cases implied by the original 
expression. All of this is a consequence of the underlying 
scheduling model which guarantees events are selected 
according to their timing windows, supposed these timing 
windows are admissible. 
 The timing constraints synthesis algorithm operates on 
the collection of TAD’s which describes the temporal 
behaviour of a system. TAD’s are initially annotated by 
start time and deadline in input nodes, which trigger 

system reactions, and the processing time in every other 
event node. Processing times can possibly be omitted in 
early analysis but must be included for final calculation of 
time clauses. Start time and deadline of remaining nodes 
are respectively assigned the default value of 0 and ∞. The 
algorithm basically propagates timing windows from 
input nodes down to causally dependent nodes (forward 
propagation).  
 Referring to the primitive precedence construct in 
Figure 7 the propagation rules are the following: 
 

SB=max( SA+PA+Lb, SB ) 
DB=min( DA+Ub, DB ) 

 
However, the presence of equality nodes as in Figure 

8a) can require a backward propagation. If <SEQ,0,DEQ> 
is the time window associated to the equality node, and 
DA and DB are the deadlines of incident nodes A and B, 
the backward propagation rule simply assigns to nodes A 
and B the deadline of the equality node: DA=DEQ, 
DB=DEQ. 

 The following exemplifies an application of TADs to a 
typical control system consisting of four actors: a Sensor, 
an Actuator, a Display and a Controller. The Sensor 
samples data from the external environment every 50 time 
units (TU) and transmits it to the Controller which must 
react through the Actuator with either a normal or an 
emergency response but not both within 45 TU after 
receiving the data.  
 Two TAD’s respectively associated to normal response 
and emergency response are portrayed in Figure 10. They 
share the Data Sampling (DS) node. The Controller 
selects the response’s TAD by a data check (Cond) carried 
in the Transmit Data (TD) action. In the normal TAD the 
data are displayed on a user screen whose background is 
prepared (Display Preparation, DP) while the Controller 
makes Data Analysis (DA). After both DP and DA, the 
analyzed data are actually displayed (Data Display, DD) 
and finally the Normal Response (NR) is generated. In the 
emergency TAD data are only analyzed (DA) and then the 
Emergency Response (ER) is provided. Normal and 
emergency TAD’s are annotated by the assumed 
processing times and the required deadline (see the edges 
DS-TD). Time information in Figure 10 is relative to the 
initial instant of the sampling data. 
 It is worthy of note that each TAD implicitly follows 
the universal ∀  operator of RTL. Indeed, each time the 
DS event occurs, the temporal activity is re-started from 
its beginning and the relative time is purposely reset as 
usually is useful when modeling periodic system 
reactions. The Sensor actor is assumed to have a 
functional behavior where the DS message is self-sent 
after being received. 
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Figure 10: TAD’s for the example control system 

 
 Applying the synthesis algorithm to Figure 10 will 
update the timing constraints as shown in the Figure 11. 
The time window of DD node is the result of left and right 
propagation paths. Although the left propagation path 
would associate the window <18,15,50>, the right path, 
according to the propagation rules, replaces it with the 
final window <38,15,50>. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 11: Effect of the application of the synthesis algorithm 

 

Given the initial time parameters, Figure 11 clearly 
reports a failure in fulfilling the deadline during a normal 
response, since NR starts at 53 and doesn’t end until 63. 
Therefore, either the sampling period should be 
augmented or the processing time of critical actions (e.g., 
DA) must be shortened or the both. 
 
3.3.1 Mechanization of Rtsynchronizers 
 An Rtsynchronizer is a special purpose actor which 
transparently interfaces a group of controlled application 
actors with the runtime executive (scheduler). It gets 
involved and carries actions at both the send time and the 
dispatch (receive) time of a message. To exemplify, at the 
send time of a message M the usual action executed by the 
Rtsynchronizer is the following: 
 

if( message is M && condition ) 
     schedule( M with M’time window ); 

 
where M is assumed to be sent by a sender actor which 
associates to it a given condition (e.g., stating the current 
internal state of the sender). The time window of M is 
defined by the synthesis of the timing constraints 
described in section 3.2. At dispatch time, the 
Rtsynchronizer can memorize the occurrence time of the 
message and so forth. 
 The behaviour of a Rtsynchronizer is a flat state model 
and consists of a single state with self transitions labelled 
by relevant Condition/Action pairs. As a consequence, the 
design of Rtsynchronizers can be mechanized. The actual 
Temporal Activity Diagram (TAD) modelling language of 
SART, as supported by the graphical environment, helps 
automating the derivation of Rtsynchronizers by using the 
modelling objects portrayed in Figure 12.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12: Temporal Activity Diagram graphical notation 
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 The Activity Node describes an event/action 
occurrence node in a TAD and specifies, besides the event 
name and the associated time window, the names of the 
sender/receiver Rtsynchronizers. As a particular case the 
two can be a same Rtsynchronizer. The relevant pairs 
Condition/Action are reported for the two synchronizers. 
The expression of the Condition and the Action relies on 
a high-level programming language (e.g., Java). The 
Activity Edge is accompanied by the time interval 
required by the timing constraints propagation algorithm. 
The Reset Node can be useful in complex TAD’s for 
explicit reset of the relative time marking the starting of a 
sub-activity.  
 
3.4 Scheduling 

A key factor of SART is its ability to work with a 
custom scheduling algorithm. Since the absence of pre-
emption, finding in general the optimal schedule for the 
event set of a SART system is a well-known NP-hard 
problem. Therefore, concrete schedulers can be achieved 
by using some heuristics at runtime, i.e., at each message 
send. In order to characterize the implementation of one 
such a scheduler, the following terms are useful (see 
Figure 13). At a given instant in time n messages (events) 
are pending within the scheduler. Let tsi be the start time, 
ti the effective starting time, di the deadline and pi the 
processing time of a message mi. 
 
 
 
 
 
 

Figure 13: Message timing constraint representation 

 
The chosen heuristic is based on the following precedence 
relation “/” between messages: 
 

mi / mj ⇔ di-pi < tsj+pj 
 
Indeed (see Figure 14), would it be true the timing 
inequality between mi and mj, choosing mj would forbid 
mi from meeting its timing constraint. The “/” 
precedence relation makes it possible to reduce the 
number of precedence constraints in the formal definition 
of the makespan optimisation problem. The scheduler 
dynamically selects the “most critical” pending message 
for dispatching, i.e., that one which has minimum di-pi. 

Operatively, the implemented scheduler uses two lists: 
LD and LS. LD stores messages ranked by ascending di-pi, 
i.e., the maximum admissible delay for mi. LS is kept 
ranked by ascending tsj+pj, i.e., the minimum end time for 
message mj. The algorithm first builds the candidate set 

SC made up of messages in LS which have rank less than 
LD’first. In the case SC has one element, this one 
constitutes the dispatch message. If SC is empty, the 
dispatch message coincides with LD’first (a decision EDF 
like). If SC has more than one element, the message is 
selected (this is just one possibility) which has minimum 
tS. This choice reduces the idle times of the CPU and 
contributes to shortening the overall cost function of the 
optimisation problem. 
 
 
 
 
 
 
 
 
 

 
Figure 14: Precedence relation between messages 

 
The scheduler algorithm can also be adapted to operate 

in simulation mode, with time which is explicitly 
advanced at message dispatching and with worst-case 
processing times which are assumed for messages. The 
prototyping/simulation execution mode is useful for 
checking timing constraints in the presence of multiple 
and conflicting system reactions. The application remains 
basically the same whereas several scenarios (load 
conditions) can be considered for driving the temporal 
testing phase. 
 
4. Conclusions 
 

The development of real-time systems can greatly 
benefit from the software engineering advantages of 
powerful modelling languages based on component-based 
design and statecharts. However, to be effective, a 
notation should allow the explicit specification of and 
reasoning on the timing constraints which exist in system 
reactions and thus determine the design. SART is an 
eclectic approach presented in this paper which borrows 
structure and behaviour concepts from state of the art 
modelling languages like ROOM [2], STATEMATE [3] 
and UML-RT [4] and integrates them with a timing 
framework which depends on an RTL [13] graphical style 
of timing constraints specification, Rtsynchronizers [7-9] 
and custom scheduling are used for the analysis and 
enforcement of the timing requirements.  

SART has a synthesis tool which is able to 
propagate/analyse timing information within the message-
based thread of control which constitutes a system 
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reaction and thus automate the generation of 
Rtsynchronizers.  

A toolset in Java2 has been designed which delivers a 
full system life cycle based on SART. Functional and 
temporal modelling, property validation through 
simulation and implementation with automatic generation 
of Java code are supported. The various phases of a 
system development are united in terms of the common 
underlying actor representation. This in turn minimises 
the risks of introducing errors when transforming a 
specification into a final implementation. Separate but 
integrated tools are provided for:  
(a) designing the structure of actors and their port 

interconnections to form new components or 
systems;  

(b) modelling actor behaviours through proposed 
statecharts;  

(c) specifying timing constraints in system activities and 
mechanizing the production of Rtsynchronizers;  

(d) linking Rtsynchronizers to actors also in the context 
of a distributed implementation of the system. 

 Each tool can generate independent code. An 
implemented system can use a reduced Java Virtual 
Machine where, for instance, garbage collection is 
avoided by having messages which are collected into 
reusable pools from where they are picked-up on demand 
without necessarily using the new operator. In addition, 
only one Java thread is used to support the scheduler 
operation and the atomic execution of actions in actors. 

On-going work is directed at improving the toolset and 
completing it with a support for distribution aspects and 
to experiment with the use of the developed tools in 
complex real-time system design. 
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