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METHODOLOGY OF NUMERICAL COMPUTATIONS

WITH INFINITIES AND INFINITESIMALS ∗

Abstract. A recently developed computational methodology for executing numerical calcu-
lations with infinities and infinitesimals is described in this paper. The approach developed
has a pronounced applied character and is based on the principle “The part is less than the
whole” introduced by the ancient Greeks. This principle is applied to all numbers (finite,
infinite, and infinitesimal) and to all sets and processes (finite and infinite). The point of view
on infinities and infinitesimals (and in general, on Mathematics) presented in this paper uses
strongly physical ideas emphasizing interrelations that hold between a mathematical object
under observation and the tools used for this observation. It is shown how a new numeral sys-
tem allowing one to express different infinite and infinitesimal quantities in a unique frame-
work can be used for theoretical and computational purposes. Numerous examples dealing
with infinite sets, divergent series, limits, and probability theory are given.

1. Introduction

The concept of infinity has attracted the attention of peopleduring millennia (see the
monographs [1, 4, 7, 9, 10, 12, 13, 14, 16] and references therein). To emphasize the
importance of the subject for modern Mathematics, it is sufficient to mention that the
Continuum Hypothesis related to infinity was included by David Hilbert as Problem
Number One in his famous list of 23 unsolved mathematical problems (see [10]) that
have strongly influenced the development of Mathematics in the 20th century.

There exist different ways to generalize traditional arithmetic for finite numbers
to the case of infinities and infinitesimals (see, e.g., [1, 4,16] and references given
therein). However, the arithmetics developed for infinite numbers up to now have been
quite different from the finite arithmetic that we are used todealing with. Very often
they leave undetermined many operations that involve infinity (for example,∞−∞,
∞∞ , sum of infinitely many items, etc.) or use a representation of infinite numbers
based on infinite sequences of finite numbers. In spite of these crucial difficulties and
due to the enormous importance of the concept of infinity in science, people try to
introduce infinity into their work with computers. We can mention the IEEE Standard
for Binary Floating-Point Arithmetic containing representations for+∞ and−∞ and
incorporation of these notions in interval analysis implementations.

The development of modern views on infinity and infinitesimals was strangely
enough not simultaneous. The point of view on infinity accepted nowadays takes its
origins from the famous ideas of Georg Cantor (see [1]) who has shown that there exist
infinite sets having different cardinalities. On the other hand, in the early history of
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Calculus, arguments involving infinitesimals played a pivotal role in the Differential
Calculus developed by Leibniz and Newton (see [12, 14]). Thenotion of an infinitesi-
mal, however, lacked a precise mathematical definition and,in order to provide a more
rigorous foundation for the Calculus, infinitesimals were gradually replaced by the
d’Alembert–Cauchy concept of a limit (see [3, 5]).

The creation of a rigorous mathematical theory of infinitesimals remained an
open problem until the end of the 1950s when Robinson introduced his famous non-
standard Analysis approach (see [16]). He has shown that non-archimedean ordered
field extensions of the reals contain numbers that could serve the role of infinitesimals
and their reciprocals could serve as infinitely large numbers. Robinson then derived the
theory of limits, and more generally of Calculus, and has found a number of important
applications of his ideas in many other fields of Mathematics.

In his approach, Robinson used mathematical tools and terminology (cardinal
numbers, countable sets, continuum, one-to-one correspondence, etc.) taking their
origins from the ideas of Cantor (see [1]), thus introducingall the advantages and
disadvantages of Cantor’s theory into non-standard Analysis as well. In fact, it is well
known nowadays that while dealing with infinite sets, Cantor’s approach leads to some
counterintuitive situations that are often called “paradoxes” by non-mathematicians.
For example, the set of even numbers,E, can be put in a one-to-one correspondence
with the set of all natural numbers,N, in spite of the fact thatE is a proper subset ofN:

(1)

even numbers: 2, 4, 6, 8, 10, 12, . . .

l l l l l l

natural numbers: 1, 2, 3, 4 5, 6, . . .

In contrast, we can observe that for finite sets, if a setA is a proper subset of a setB
then it follows that the number of elements of the setA is smaller than the number of
elements of the setB.

Another famous example that is difficult to understand for many is Hilbert’s
Grand Hotel paradox, which has the following formulation. In a normal hotel with a
finite number of rooms no more new guests can be accommodated if it is full. Hilbert’s
Grand Hotel has an infinite number of rooms (of course, the number of rooms is count-
able, because the rooms in the Hotel are numbered). Due to Cantor, if a new guest
arrives at the Hotel where every room is occupied, it is, nevertheless, possible to find a
room for him. To do so, it is necessary to move the guest occupying room 1 to room
2, the guest occupying room 2 to room 3, etc. In such a way room 1will be ready for
the newcomer and, in spite of our assumption that there are noavailable rooms in the
Hotel, we have found one.

These results are very difficult for a non-mathematician to fully comprehend,
since in everyday experience in the world around us the part is always less than the
whole and if a hotel is complete there are no places left in it.In order to understand how
it is possible to tackle the situations discussed above in accordance with the principle
“the part is less than the whole” let us consider a study published inScience(see [8])
where the author describes a primitive tribe living in Amazonia – Pirahã – that uses a
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very simple numeral system1 for counting: one, two, many. For Pirahã, all quantities
larger than two are just “many” and such operations as 2+2 and2+1 give the same
result, i.e., “many”. Using their weak numeral system Pirahã are not able to see, for
instance, numbers 3, 4, 5, and 6, to execute arithmetical operations with them, and, in
general, to say anything about these numbers because in their language there are neither
words nor concepts for that. Moreover, the weakness of Pirahã’s numeral system leads
to such results as

“many”+1= “many”, “many”+2= “many”,

which are very familiar to us in the context of views on infinity used in the traditional
calculus

∞+1= ∞, ∞+2= ∞.

Thus, the modern mathematical numeral systems allow us to distinguish a larger quan-
tity of finite numbers with respect to Pirahã, but give similar results when we speak
about infinite numbers.

The arithmetic of Pirahã involving the numeral “many” has also a clear simi-
larity with the arithmetic proposed by Cantor for his Alephs. This similarity becomes
even stronger if one considers another Amazonian tribe – Mundurukú (see [15]) – who
fail in exact arithmetic with numbers larger than 5 but are able to compare and add
large approximate numbers that are far beyond their naming range. In particular, they
use the words “some, not many” and “many, really many” to distinguish two types of
large numbers (in this connection one can contemplate Cantor’s ℵ0 andℵ1).

These observations lead us to the following idea:Probably our difficulty in
working with infinity is not really connected to the nature ofinfinity but is a result of
inadequate numeral systems used to express infinite numbers. Analogously, Pirahã are
not able to distinguish numbers 3 and 4 not due to the nature ofthese numbers but due
to the weakness of the numeral system that Pirahã use.

In this paper, we show how the introduction of a new numeral allows one to
express different infinite and infinitesimal quantities. Taken together with a new (phys-
ically oriented) methodology for Mathematics, this new numeral system can be used
for theoretical and computational purposes using the Infinity Computer (see [21]) that
is able to work numerically with infinite and infinitesimal numbers expressed in the
new system.

2. From absolute truth to relativity and the accuracy of mathematical results

In this section, we give a brief introduction to the new methodology that can be found
in a rather comprehensive form in the survey [20] downloadable from [27] (see also the
monograph [18] written in a popular manner and [24] describing the foundations of a

1Recall that anumeralis a symbol or group of symbols that represents anumber. The difference between
numerals and numbers is the same as the difference between words and the things they refer to. Anumber
is a concept that anumeralexpresses. The same number can be represented by different numerals. For
example, the symbols “10”, “ten”, and “X” are different numerals, but they all represent the same number.
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new differential calculus). Numerous examples of the usageof the proposed method-
ology can be found in [18, 19, 22, 23, 25, 26, 27]. The goal of the entire operation
is to propose a way of thinking that would allow us to work withfinite, infinite, and
infinitesimal numbers in the same way, namely, in the way we are used to deal with
finite quantities in the world around us.

In order to start, let us make some observations. As was mentioned above, the
foundations of modern Set Theory dealing with infinity have been developed starting
from the end of the 19th century until more or less the first decades of the 20th cen-
tury. The foundations of classical Analysis dealing both with infinity and infinitesimals
were developed even earlier, more than 200 years ago. The goal of its creation was to
produce mathematical tools allowing one to solve problems arising in the real world
in that time. As a result, classical Analysis was built usingthe background of ideas,
common at the time, that people had about Physics (and Philosophy). Thus, this part of
Mathematics does not include the numerous achievements of 20th century Physics. In
fact, classical Analysis operates with absolute truths, and ideas of relativity and quanta
are not reflected in it. Let us give just one example to clarifythis point.

In modern Physics, the “continuity” of an object is relative. If we observe a table
by eye, then we see it as being continuous. If we use a microscope for our observation,
we see that the table is discrete. This means thatwe decidehow to see the object, as
a continuous or as a discrete, by the choice of the instrumentfor the observation. A
weak instrument – our eyes – is not able to distinguish its internal small separate parts
(e.g., molecules) and we see the table as a continuous object. A sufficiently strong
microscope allows us to see the separate parts and the table becomes discrete but each
small part now is viewed as continuous.

In contrast, in traditional Mathematics, any mathematicalobject is either con-
tinuous or discrete. For example, the same function cannot be both continuous and
discrete. Thus, this contraposition of discrete and continuous in the realm of tradi-
tional Mathematics does not reflect properly the physical situation that we observe in
practice.

Note that even the results of Robinson in the middle of the 20th century were
directed towards a reformulation of classical Analysis in terms of infinitesimals, rather
than the creation of a new kind of Analysis that would incorporate the new achieve-
ments of Physics. In fact, in paragraph 1.1 of his famous book[16], Robinson wrote:
“It is shown in this book that Leibniz’ ideas can be fully vindicated and that they lead
to a novel and fruitful approach to classical Analysis and tomany other branches of
mathematics”.

In order to overcome this delay in the introduction of ideas from 20th century
Physics into Mathematics, the point of view on infinities andinfinitesimals (and in
general, on Mathematics) presented in this paper uses strongly relativity and the in-
terrelations that hold between the object of an observationand the tool used for this
observation. The latter is directly related to connectionsbetween numeral systems
used to describe mathematical objects and the objects themselves. Numerals that we
use to write down numbers, functions, etc. are among our tools of the investigation
and, as a result, they strongly influence our capabilities tostudy mathematical objects.
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This separation (having an evident physical spirit) of mathematical objects from
the tools used for their description is crucial for our study, but is used rarely in contem-
porary Mathematics. In fact, the idea of finding an adequate (absolutely the best) set of
axioms for one field or another of Mathematics continues to beamong the most attrac-
tive goals for contemporary mathematicians. Usually, whenit is necessary to define a
concept or an object, logicians try to introduce a number of axiomsdefiningthe object.
However, this way is fraught with danger for the following reasons.

First, when we describe a mathematical object or concept we are limited by the
expressive capacity of the language we use to make this description. A richer language
allows us to say more about the object and a weaker language less. Thus, development
of mathematical (and not only mathematical) languages leads to a continuous necessity
for transcription and specification of axiomatic systems. Second, there is no guarantee
that the chosen axiomatic system defines “sufficiently well”the required concept and a
continuous comparison with practice is required in order tocheck the effectiveness of
the accepted set of axioms. Again however, there cannot be any guarantee that the new
version will be the final and definitive one. Finally, the third limitation already men-
tioned above has been discovered by Gödel in his two famous incompleteness theorems
(see [6]).

It should be emphasized that in Linguistics, the relativityof a language with re-
spect to the world around it is well known, and has been formulated in the form of the
Sapir–Whorf thesis (see [2, 17]) also known as the “linguistic relativity thesis”. As be-
comes clear from its name, this thesis does not accept the universality of language and
postulates that the nature of a particular language influences the thought of its speakers.
The thesis challenges the possibility of perfectly representing the world with language,
because it implies that the mechanisms of any language condition the thoughts of its
speakers.

Thus, our point of view on axiomatic systems is different. Itis significantly
more applied and less ambitious and is related only to utilitarian necessities to make
calculations. In contrast to modern mathematical fashion that tries to make all ax-
iomatic systems more and more precise (thereby decreasing degrees of freedom of the
studied part of Mathematics), we just define a set of general rules describing how prac-
tical computations should be executed leaving as much spaceas possible for further
changes and developments of the mathematical language being introduced, changes
that are dictated by practice. Speaking metaphorically, weprefer to make a hammer
and to use it instead of describing what a hammer is and how it works.

Since our point of view on the mathematical world is significantly more physical
and more applied than the traditional one, it becomes necessary to clarify it better. Let
us formulate three methodological postulates that will guide our further study and will
show where our positions are different with respect to the tradition.

Traditionally, when mathematicians deal with infinite objects (sets or processes)
it is supposed that human beings are able to execute certain operations infinitely many
times (e.g., see (1)). However, since we live in a finite worldand all human beings
and/or computers are forced to finish operations that they have started, this supposition
is not adopted.
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Postulate 1.There exist infinite and infinitesimal objects but human beings and
machines are able to execute only a finite number of operations.

Due to this postulate, we accept a priori that we shall never be able to give a
complete description of infinite processes and sets becauseof our finite capabilities.

The second postulate is adopted following the way of reasoning used in natural
sciences where researchers use tools to describe the objectof their study and the choice
of instrument influences the results of the observations. When a physicist uses a weak
lensA and sees two black dots in his/her microscope he/she does notsay: The object of
the observationis two black dots. The physicist is obliged to say: the lens usedin the
microscope allows us to see two black dots and it is not possible to say anything more
about the nature of the object of the observation until we replace the instrument – the
lens or the microscope itself – by a more precise one. Supposethat he/she changes the
lens and uses a stronger lensB and is able to observe that the object of the observation
is viewed as ten (smaller) black dots. Thus, we have two different answers: (i) the
object is viewed as two dots if the lensA is used; (ii) the object is viewed as ten dots by
applying the lensB. Which of the answers is correct? Both. Both answers are correct
but with the different accuracies that depend on the lens used for the observation.

The same thing happens in Mathematics studying natural phenomena, numbers,
and objects that can be constructed by using numbers. Numeral systems used to express
numbers are among the instruments of observations used by mathematicians. Usage of
powerful numeral systems gives one the possibility to obtain more precise results in
Mathematics in the same way as usage of a good microscope gives one the possibility
of obtaining more precise results in Physics. However, the capabilities of the tools will
always be limited by Postulate 1 (we are able to write down only a finite number of
symbols when we wish to describe a mathematical object), andbecause of Postulate 2
we shall never be able to saywhat, for example, a numberis, but we will merely
observe it through numerals expressible in a chosen numeralsystem.

Postulate 2.We cannot tellwhatthe mathematical objects that we deal withare;
we just shall construct more powerful tools that will allow us to improve our capacities
to observe and to describe properties of mathematical objects.

This means that mathematical results are not absolute, theydepend on mathe-
matical languages used to formulate them, i.e., there always exists an accuracy to the
description of a mathematical result, fact, object, etc. For instance, the result of Pi-
rahã 2+2= “many” is not wrong, it is just inaccurate. The introductionof a stronger
tool (in this case, a numeral system that contains a numeral for a representation of the
number four) allows us to have a more precise answer.

It is necessary to comment upon another important aspect of the distinction
between a mathematical object and a mathematical tool used to observe this object.
Postulates 1 and 2 impose us to think always aboutthe possibility to executea math-
ematical operation by applying a numeral system. They tell us that there always exist
situations where we are not able to express the result of an operation.
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Let us consider, for example, the operation of constructingthe successor ele-
ment widely used in number and set theories. In traditional Mathematics, the question
of whether this operation can be executed is not taken into consideration; it is supposed
that it is always possible to execute the operationk= n+1 starting from any integern.
Thus, there is not any distinction between the existence of the numberk and the pos-
sibility to execute the operationn+1 and to express its result, i.e., to have a numeral
that can expressk.

Postulates 1 and 2 emphasize this distinction and tell us that: (i) in order to
execute the operation it is necessary to have a numeral system allowing one to express
both numbers,n andk; (ii) for any numeral system there always exists a numberk that
cannot be expressed in it. For instance, for Pirahãk= 3, for Mundurukúk= 6. Even for
modern powerful numeral systems there exist such a numberk (for instance, nobody is
able to write down a numeral in the decimal system having 10100 digits). Hereinafter
we shall always emphasize the triad – researcher, object of the investigation, and tools
used to observe the object – in various mathematical and computational contexts paying
special attention to the accuracy of the results obtained.

In particular, Postulate 2 means that, from our point of view, axiomatic systems
do not definemathematical objects but just determine formal rules for operating with
certain numerals reflecting some properties of the mathematical objects being studied
using a certain mathematical languageL. We are aware that the chosen languageL
has its accuracy and there always can exist a richer languageL̃ that would allow us to
better describe the object under study. Due to Postulate 1, any language has a limited
expressibility, in particular, there always exist situations where the accuracy of the an-
swers expressible in this language is not sufficient. Such situations lead to “paradoxes”
exhibiting the boundaries of the applicability of a language (theory, concept, etc.)

Let us return again to Pirahã and illustrate this point by using their answers
2+1 = “many”, and 2+ 2 = “many”. From these two identities one can obtain the
“paradoxical” result 2+1= 2+2. From our point of view, this situation just determines
the boundaries of the applicability of their numeral system.

Finally, we adopt the principle of the ancient Greeks, mentioned above, as a
third postulate.

Postulate 3. The principle “The part is less than the whole” is applied to all
numbers (finite, infinite, and infinitesimal) and to all sets and processes (finite and
infinite).

Due to this declared applied statement, it becomes clear that the subject of this
paper is outside Cantor’s approach and, as a consequence, outside of non-standard
Analysis of Robinson. Such concepts as bijection, numerable and continuum sets,
cardinal and ordinal numbers cannot be used in this paper because they belong to a
theory working with different assumptions. However, the approach used here does
not contradict Cantor and Robinson. It can be viewed just as astronger lens of a
mathematical microscope that allows one to distinguish more objects and to work with
them.
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3. An infinite unit of measure expressible by a new numeral

In [18, 20], a new numeral system was developed in accordancewith methodological
Postulates 1–3. It gives one the possibility to execute numerical computations not only
with finite numbers but also with infinite and infinitesimal ones. The main idea consists
of the possibility of measuring infinite and infinitesimal quantities by different (infinite,
finite, and infinitesimal) units of measure.

A new infinite unit of measure has been introduced for this purpose as the num-
ber of elements of the setN of natural numbers. The new number is calledgrossone
and is expressed by the numeral①. It is necessary to stress immediately that① is
neither Cantor’sℵ0 nor ω. Particularly, it has both cardinal and ordinal propertiesin
common with usual finite natural numbers (see [20]). Note also that since①, on the one
hand, andℵ0 (andω), on the other, belong to different mathematical languageswork-
ing with different theoretical assumptions, they cannot beused together. Similarly, it is
not possible to use together Piraha’s “many” and the modern numeral “4”.

Formally, grossone is introduced as a new number by describing its properties
postulated by theInfinite Unit Axiom(IUA) (see [18, 20]). This axiom is adjoined
to the axioms for real numbers just as one adjoins the axiom determining zero to the
axioms of natural numbers when integers are introduced. It is important to emphasize
that we speak about axioms for real numbers in sense of Postulate 2, i.e., axioms do
not define real numbers, they just define formal rules of operations with numerals in
given numeral systems (tools of the observation), thereby reflecting certain (not all)
properties of the object of the observation, i.e., properties of real numbers.

Inasmuch as it has been postulated that grossone is a number,all other axioms
for numbers hold for it, too. In particular, associativity and commutativity of multipli-
cation and addition, the distributive property of multiplication over addition, the exis-
tence of inverse elements with respect to addition and multiplication hold for grossone
as for finite numbers. This means that the following relations hold for grossone, as for
any other number

(2) 0·① = ① ·0= 0, ①−① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0.

The introduction of the new numeral allows us to use it for theconstruction of various
new numerals expressing infinite and infinitesimal numbers and to operate with them
as with usual finite constants. As a consequence, the numeral∞ is excluded from our
new mathematical language (together with numeralsℵ0,ℵ1, . . . andω). In fact, since
we are able now to express explicitly different infinite numbers, records of the type
∑∞

i=1ai become a kind of∑many
i=1 ai , i.e., they are not sufficiently precise. It becomes

necessary not only to say thati goes to infinity, it is necessary to indicate to which
point at infinity (e.g.,①,5①−1,①2+3, etc.) we want to sum up. Note that for sums
having a finite number of items the situation is the same: it isnot sufficient to say that
the number of items in the sum is finite, it is necessary to indicate explicitly the number
of items in the sum.

The appearance of new numerals expressing infinite and infinitesimal numbers
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gives us a lot of new possibilities. For example, it becomes possible to develop a
Differential Calculus (see [24]) for functions that can assume finite, infinite, and in-
finitesimal values and can be defined over finite, infinite, andinfinitesimal domains
avoiding indeterminate forms and divergences (all these concepts just do not appear
in the new Calculus). This approach allows us to work with derivatives and integrals
that can assume not only finite but infinite and infinitesimal values, as well. Infinite
and infinitesimal numbers are not auxiliary entities in the new Calculus, they are full
members in it and can be used in the same way as finite constants.

Let us comment upon the nature of grossone and give some examples illustrat-
ing its usage and, in particular, its direct links with infinite sets.

EXAMPLE 1. Grossone has been introduced as the number of elements of the
setN of natural numbers. As a consequence, by analogy to the set

(3) A= {1,2,3,4,5}

consisting of 5 natural numbers where 5 is the largest numberin A, ① is the largest
number2 in N, and①∈N just as 5 belongs toA. Thus the setN of natural numbers can
be written in the form

(4) N= {1,2, . . .
①

2
−2,

①

2
−1,

①

2
,
①

2
+1,

①

2
+2, . . . ①−2, ①−1, ①}.

Note that traditional numeral systems did not allow us to seeinfinite natural numbers

(5) . . .
①

2
−2,

①

2
−1,

①

2
,
①

2
+1,

①

2
+2, . . . ①−2,①−1,①.

Similarly, Pirahã are not able to see finite numbers larger than 2 using their weak nu-
meral system but these numbers are visible if one uses a more powerful numeral sys-
tem. Due to Postulate 2, the same object of observation – the setN – can be observed
by different instruments – numeral systems – with differentaccuracies allowing one to
express more or less natural numbers. �

This example illustrates also the fact that when we speak about sets (finite or
infinite) it is necessary to take care about tools used to describe a set (remember Pos-
tulate 2). In order to introduce a set, it is necessary to havea language (e.g., a numeral
system) allowing us to describe its elements and to express the number of the elements
in the set. For instance, the setA from (3) cannot be defined using the mathematical
language of Pirahã.

In the same way, neither do the words “the set of all finite numbers” completely
define a set from our point of view. It is always necessary to specify which instruments
are used to describe (and to observe) the required set and, asa consequence, to speak
about “the set of all finite numbers expressible in a fixed numeral system”. For instance,
for Pirahã “the set of all finite numbers” is the set{1,2} and for Mundurukú “the set

2This fact is one of the important methodological differences with respect to non-standard analysis
theories where it is supposed that infinite numbers do not belong toN.
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of all finite numbers” is the setA from (3). As it happens in Physics, the instrument
used for an observation bounds the possibility of the observation. It is not possible
to say how we shall see the object of our observation if we havenot clarified which
instruments will be used to execute the observation.

EXAMPLE 2. Infinite numerals constructed using① allow us to observe various
infinite integers that are the numbers of elements of infinitesets. For example,①−1 is
the number of elements of a setB=N\{b}, b∈N, and①+1 is the number of elements
of a setA= N∪{a}, wherea /∈ N.

Due to Postulate 3, positive integers that are larger than grossone do not belong
to N. However, numerals expressing such numbers can be easily constructed and it
can be shown that they represent the number of elements of certain infinite sets. For
instance,①2 is the number of elements of the setV of couples of natural numbers

V = {(a1,a2) : a1 ∈ N,a2 ∈ N}.

By increasinga1 anda2 from 1 to① we are able to write down initial and final couples
forming this set:

(1,1), (1,2), . . . (1,①−1), (1,①),
(2,1), (2,2), . . . (2,①−1), (2,①),
. . . . . . . . . . . . . . .

(①−1,1), (①−1,2), . . . (①−1,①−1), (①−1,①),
(①,1), (①,2), . . . (①,①−1), (①,①).

Analogously, the number 2① is the number of elements of the set

U = {(a1,a2, . . .a①−1,a①) : a1 ∈ {1,2},a2 ∈ {1,2}, . . .a①−1 ∈ {1,2},a① ∈ {1,2}}

and the number①① is the number of elements of the set

W = {(a1,a2, . . .a①−1,a①) : a1 ∈N,a2 ∈N, . . .a①−1 ∈N,a① ∈N}. �

As was mentioned above, the introduction of grossone gives us the possibility
to compose new numerals (in comparison with traditional numeral systems), and to
appreciate from them not only numbers like (3) but also certain numbers larger than
①. We can speak about the set ofextended natural numbers(includingN as a proper
subset) indicated aŝN where

(6) N̂= {1,2, . . . ,①−1,①,①+1,①+2,①+3, . . . ,①2−1,①2.①2+1, . . .}.

The number of elements of the setN̂ cannot be expressed within a numeral system
using only①. It is necessary to introduce in a reasonable way a more powerful numeral
system and to define new numerals (for instance,②, ③, etc.) of this system that would
allow one to fix the set (or sets) somehow. In general, due to Postulate 1 and 2, for any
fixed numeral systemA there always be sets that cannot be described usingA.

Let us give one more example illustrating properties of grossone.
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EXAMPLE 3. Analogously to (4), the set,E, of even natural numbers can be
written now in the form

(7) E= {2,4,6 . . . ①−4, ①−2, ①}.

Due to Postulate 3 and the IUA (see [18, 20]), it follows that the number of elements of
the set of even numbers is equal to①

2 and① is even. Note that the next even number
is ①+2 but it is not natural. In fact, since①+2> ①, it is extended natural (see (6)).
Thus, we can write down not only initial (as it is done traditionally) but also the final
part of (1)

2, 4, 6, 8, 10, 12, . . . ①−4, ①−2, ①

l l l l l l l l l

1, 2, 3, 4 5, 6, . . . ①
2 −2, ①

2 −1, ①
2

concluding thus (1) in a complete accordance with Postulate3.

Suppose now that we have a setA that hask elements and all its elements are
multiplied by a constant in order to form the setB. Then the number of the elements
of the resulting setB will be the same as in the initial setA independently on the fact
whetherk is finite or infinite. For instance, if we takeA = N then it has grossone
elements. By choosing the setB= {y : y= 2x,x∈ N}, we have (see (4)) that

B= {2,4,6,8, . . .①−4,①−2,①,①+2,①+4, . . .2①−4,2①−2,2①},

i.e. it also has grossone elements. All the elements of the set B are even. Numbers
2,4,6,8, . . .①− 4,①− 2,① are even natural numbers and① + 2,①+ 4, . . .2①− 4,
2①−2,2① are even extended natural numbers. �

It is worth noticing that the new numeral system allows us to avoid many other
“paradoxes” related to infinities and infinitesimals (see [18, 20, 23]). For instance,
let us return to Hilbert’s Grand Hotel paradox presented in Section 1. In the original
formulation of the paradox, the number of rooms in the Hotel is countable. In our
terminology, such a definition is not sufficiently precise. It is necessary to indicate
explicitly the infinite number of rooms in the Hotel. Supposethat it has① rooms.
When a new guest arrives, it is proposed to move the guest occupying room 1 to room
2, the guest occupying room 2 to room 3, etc. Finally, the guest from room① should
be moved to room①+1 but the Hotel has only① rooms. As a result, the person from
the last room should leave the Hotel.

Thus, when the Hotel is full, no more new guests can be accommodated in it if
one wants that all guests living in the Hotel before the arrival of the newcomer remain
inside. This result corresponds perfectly to Postulate 3 and to the situation taking place
in hotels with a finite number of rooms.

Let us consider now the issue regarding a more systematic wayto produce nu-
merals including①. In order to express more numbers having finite, infinite, andin-
finitesimal parts, records similar to traditional positional numeral systems can be used
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(see [18, 20]). To construct a numberC in the new numeral positional system to base①,
we subdivideC into groups corresponding to powers of①:

(8) C= cpm①pm+ . . .+ cp1①
p1 + cp0①

p0 + cp−1①
p−1 + . . .+ cp−k①

p−k.

Then, the numeral

(9) C= cpm①pm . . .cp1①p1cp0①
p0cp−1①

p−1 . . .cp−k①
p−k

represents the numberC, where all numeralsci are expressed in a traditional numeral
system we are used to express finite numbers and are calledgrossdigits. They express
finite positive or negative numbers (i.e., allci 6= 0) and show how many corresponding
units①pi should be added or subtracted in order to form the numberC.

Numberspi in (9) are sorted in the decreasing order withp0 = 0

pm > pm−1 > .. . > p1 > p0 > p−1 > .. . p−(k−1) > p−k.

They are calledgrosspowersand they themselves can be written in the form (9). In the
record (9), we write①pi explicitly because in the new numeral positional system the
numberi in general is not equal to the grosspowerpi . This gives the possibility to write
down numerals without indicating grossdigits equal to zero.

The term havingp0 = 0 represents the finite part ofC because, due to (2), we
havec0①0 = c0. The terms having finite positive grosspowers represent thesimplest
infinite parts ofC. Analogously, terms having negative finite grosspowers represent the
simplest infinitesimal parts ofC. For instance, the number①−1 = 1

①
is infinitesimal.

It is the inverse element with respect to multiplication for①:

(10) ①−1 ·① = ① ·①−1 = 1.

Note that all infinitesimals are not equal to zero. In particular, 1
①

> 0 because it is the
result of division of two positive numbers. All of the numbers introduced above can be
grosspowers as well, thereby giving the possibility of having various combinations of
quantities and to construct terms having a more complex structure.

EXAMPLE 4. In this example, it is shown how to write down numerals in the
new positional numeral system and how the value of the numberis calculated:

C1 = 17.21①52.4①−72.1134①81.437.02①052.1①−9.2(-0.23)①−3.7①

= 17.21①52.4①−72.1 +134①81.43+7.02①0+52.1①−9.2−0.23①−3.7①.

The numberC1 above has two infinite parts of the type①52.4①−72.1 and①81.43, a finite
part corresponding to①0, and two infinitesimal parts of the type①−9.2 and①−3.7①. The
corresponding grossdigits show how many units of each kind should be taken (added
or subtracted) to formC1. �
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4. Numerical computations and modelling using the new methodology

Let us start by considering what we have instead of series when we apply the new
methodology; in particular, what happens in the case of divergent series with alter-
nating signs. As was already mentioned, the numeral∞ is excluded from our new
mathematical language since we are able now to express explicitly different infinite
numbers. In fact, records of the type∑∞

i=1ai become a kind of∑many
i=1 ai and are not

sufficiently precise. In order to define a sum (independentlyof whether the number of
items in it is finite or infinite), it is necessary to indicate explicitly how many items we
want to sum. If the number of items in a sum is infinite then, as happens for the finite
case, different numbers of items in a sum lead to different answers (that can be infinite,
finite, or infinitesimal). Let us give just two examples (see [20, 24] for a more detailed
discussion).

EXAMPLE 5. We start from the famous series

S1 = 1−1+1−1+1−1+ . . .

In the literature, there exist many approaches giving different answers regarding the
value of this series (see [11]). All of them use various notions of average to calculate
the series. However, the notions of the sum and of an average are two different things.
In our approach, we do not use the notion of series and do not appeal to an average. We
indicate explicitly the number of items,k, in the sum (wherek can be finite or infinite)
and calculate it directly:

S1(k) = 1−1+1−1+1−1+1− . . .︸ ︷︷ ︸
k

=

{
0 if k= 2n,
1 if k= 2n+1,

and it is not important whether the numberk is finite or infinite. For example, for
k= 2① we haveS1(2①) = 0, and fork= 2①−1 we obtainS1(2①−1) = 1. �

It is important to emphasize that, as happens in the case of a finite number of
items in a sum, the resulting answers do not depend on the way the items in the entire
sum are rearranged. In fact, if we know the exact infinite number of items in the sum
and the order of alternating the signs is clearly defined, we also know the exact number
of positive and negative items in the sum.

Let us illustrate this point by supposing, for instance, that we want to rearrange
the items in the sumS1(2①) in the following way:

S1(2①) = 1+1−1+1+1−1+1+1−1+ . . .

We know that the sum has 2① items and the number 2① is even. This means that in
the sum there are① positive and① negative items. As a result, the rearrangement
considered above can continue only while the positive itemspresent in the sum are not
exhausted, after which it will be necessary to continue to adjoin only negative numbers.
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More precisely, we have

S1(2①) = 1+1−1+1+1−1+ . . .+1+1−1︸ ︷︷ ︸
① positive and①

2 negative items

−1−1− . . .−1−1−1︸ ︷︷ ︸
①
2 negative items

= 0,

where the result of the first part in this rearrangement is calculated as(1+1−1)· ①2 = ①
2

and the result of the second part is equal to−①
2 .

EXAMPLE 6. Let us consider now the following divergent series

S2 = 1−2+3−4+ . . .

Again we should fix the number of items,k, in the sumS2(k). Suppose that it contains
grossone items. Then it follows that

S2(①) = 1−2+3−4+ . . .− (①−2)+ (①−1)−①

= (1+3+5+ . . .+(①−3)+ (①−1)︸ ︷︷ ︸
①
2 items

)− (2+4+6+ . . .+(①−2)+①︸ ︷︷ ︸
①
2 items

)

(11) =
(1+①−1)①

4
−

(2+①)①

4
=

①2−2①−①2

4
=−

①

2
.

Obviously, if we change the number of items,k, then, as it happens in the finite case,
the results of summation will also change. For instance, it follows thatS2(①−1) = ①

2
andS2(①+1) = ①

2 +1. �

By analogy to the passage from series to sums considered above, we are able
now to move from limits of expressions to the exact evaluation of these expressions at
points (finite, infinite or infinitesimal) of our interest. Moreover, we can calculate an
expressionf (x) independently of the existence of any limit. We are able to change our
way of thinking in the sense that instead of formulating problems in terms of limits by
asking “What happens whenx tendsto ∞?” we can ask “What happens at different
points of infinity?”

In this manner, limits are substituted by computation, at different pointsx, of
precise resultsf (x) that can assume infinite, finite or infinitesimal values and can be
evaluated also in the cases in which limits do not exist. As a rule, the calculated values
are different for different infinite, finite, or infinitesimal values ofx. Note that the
possibility of the direct evaluation of expressions is veryimportant (in particular, for
automatic computations) because it eliminates indeterminate forms from the practice
of computations.

For instance, in the traditional language, if for a finitea, lim
x→a

f (x) = 0 and

lim
y→∞g(y) = ∞ then

lim
x→a

f (x) · lim
y→∞g(y)



Numerical computations with infinities and infinitesimals 109

is indeterminate. In the new language, this means that for any x = a+ z wherez is
infinitesimal, the valuef (a+ z) is also infinitesimal and for any infinitey it follows
thatg(y) is also infinite. In order to be able to execute computations,we should behave
as we are used to doing in the finite case. Namely, it is necessary to choosez andy,
to evaluatef (a+ z) andg(y). After we have performed these operations it becomes
possible to execute multiplicationf (a+z) ·g(y) and to obtain the corresponding result
that can be infinite, finite or infinitesimal depending on the values ofz andy and the
form of expressionsf (x) andg(y).

It is possible also to execute other operations with infinitesimals and infinities
asking questions with respect tof (a+ z) andg(y) that could not even be formulated
using the traditional language using limits. For instance,we can ask about the result of
the following expression

(12) f (a+ z2)

(
g(y1)

f (a+ z1)
−1.25g(y2)

3
)

for two different infinitesimalsz1,z2 and two different infinite valuesy1,y2.

EXAMPLE 7. Let us consider an illustration regarding computation ofthe prod-
uct f (a+ z) ·g(y). For the sake of simplicity we takea= 0, g(y) = y, and

f (x) =





2x, x< 0,

1, x= 0,

x3, x> 0.

If we want to calculate the product at pointsz= ①−1 andy= ① then it follows that

f (a+ z) ·g(y) = f (①−1) ·g(①) = ①−3 ·① = ①−2.

Analogously,z= ①−1 andy= ①4 give

f (①−1) ·g(①4) = ①−3 ·①4 = ①1

and forz=−2①−1 andy= ① we obtain

f (−2①−1) ·g(①) =−4①−1 ·① =−4.

We end this example by calculating the result of the expression (12) forz1 = −2①−1,
z2 =−5①−4, y1 = ①2, andy2 = ①

f (a+ z2)

(
g(y1)

f (a+ z1)
−1.25g(y2)

3
)
= f (−5①−4)

(
g(①2)

f (−2①−1)
−1.25g(①)3

)

= −10①−4 ·

(
①2

−4①−1 −1.25①3

)
=−10①−4 ·

(
−0.25①3−1.25①3

)
= 15①−1. �
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Figure 1: What is the probability that the rotating disk stops in such a way that the
pointA will be exactly in front of the arrow?

We conclude the paper by showing how the distinction betweenmathematical
objects and tools of their observation helps us in solving probabilistic questions and
introduces the ideas of relativity in Mathematics. In particular, we intend to show that
the new approach allows us to distinguish the impossible event having the probability
equal to zero (i.e.,P(∅) = 0) from those events that from the traditional point of view
have probability equal to zero but can occur.

Let us consider the problem presented in Fig. 1 from the pointof view of tra-
ditional probability theory. We start to rotate a disk having radiusr with the pointA
marked at its border and we would like to know the probabilityP(E) of the following
eventE: the disk stops in such a way that the pointA will be exactly in front of the
arrow fixed at the wall. Since the pointA is an entity that has no extent, it is calculated
by considering the following limit

P(E) = lim
h→0

h
2πr

= 0.

whereh is an arc of the circumference containingA and 2πr is its length.

However, the pointA can stop in front of the arrow, i.e., this event is not impos-
sible and its probability should be strictly greater than zero, i.e.,P(E)> 0. Obviously,
this example is a particular manifestation of the general fact that, ifξ is any continuous
random value anda is any real number thenP(ξ = a) = 0. While for a discrete random
variable one could say that an event with probability zero isimpossible, this cannot be
said in the terms of traditional probability theory for any continuous random variable.

Let us see what we can say with respect to this problem by usingthe new
methodology. The problem under consideration deals with points located on the cir-
cumferenceC of the disk. Thus, we need a definition of the term “point” and mathe-
matical tools allowing us to indicate a point on the circumference. If we accept (as is
usually done in modern Mathematics) that apoint is determined by a numeralx called
thecoordinate of the pointwherex∈ S andS is a set of numerals, then we can indicate
the point by its coordinatex and are able to execute required calculations. The choice
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of the numeral systemS defines both the kind of numerals expressible in this system
and the quantity (finite or infinite) of these numerals (see [24, 23] for a detailed discus-
sion). As a consequence, we are not able to work with those points which coordinates
are not expressible in the chosen numeral systemS (recall Postulate 2).

Different numeral systems can be chosen to express coordinates of the points
in dependence on the precision level we want to obtain. In some sense, the situation
with counting points is similar to the work with a microscope: we decide the level of
the precision we need and obtain a result dependent on the chosen level. If we need
a more precise or a more rough answer, we change the level of the accuracy of our
microscope. In the moment when we have have decided which lens (numeral system)
we put in the microscope we decide which objects (points, arcs, etc.) we are able to
observe, to measure, and to work with.

The formalization of the concept “point” introduced above allows us to execute
more accurate computations having, as always happens in anyprocess of the measure-
ment, their own accuracy. Suppose that we have chosen a numeral systemS allowing
one to observeK points on the circumference. Definition of the notionpoint allows
us to define elementary events in our experiment as follows: the disk has stopped and
the arrow indicates a point. As a consequence, we obtain thatthe number,N(Ω), of all

possible elementary events,ei , in our experiment is equal toK whereΩ = ∪
N(Ω)
i=1 ei is

the sample space of our experiment. If our disk is well balanced, all elementary events
are equiprobable and, therefore, they have the same probability equal to 1

N(Ω)
and the

accuracy of any further computation with this probabilistic model will be equal to 1
N(Ω)

.

Thus, we can calculateP(E) directly by subdividing the number,N(E), of favorable
elementary events by the number,K = N(Ω), of all possible events.

For example, if we use numerals of the typei·2πr
①

, i ∈ N, thenK = ① and, since
the number of the points is infinite and the length of the circumference is finite, our
points are infinitesimally close, i.e., the probabilistic model is continuous. The chosen
numerals define the accuracy of the model and do not allow us toanswer to questions
regarding objects having an extension on the circumferencethat is less than2πr

①
.

The numberN(E) depends on our decision about how many numerals we want
to use to represent the pointA. If we decide that the pointA on the circumference is
represented bymnumerals we obtain

P(E) =
N(E)
N(Ω)

=
m
K

=
m
①

> 0,

where the numberm
①

is infinitesimal ifm is finite. Note that this representation is very
interesting also from the point of view of distinguishing the notions “point” and “arc”.
Whenm is finite than we deal with a point, whenm is infinite we deal with an arc.

In the case we need a probabilistic model with a higher accuracy, we can choose,
for instance, numerals of the typei·2πr

①2 , 1≤ i ≤ ①2, for expressing points on the cir-
cumference. In this way we also obtain a continuous model with an order that is higher
than in the previous case. It follows thatK = ①2 and for a finitem we obtain the
infinitesimal probabilityP(E) = m

①2 > 0.
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In contrast, if we need a rough probabilistic model and decide to work with
a finite numberK of points on the circumference, then we have the discrete model.
In this case, the probabilityP(E) will be finite, and the model does not allow us to
answer questions regarding objects having an extension on the circumference that is
less than2πr

K .

As we have shown by the example above, in our approach, for both cases, the
discrete and the continuous one, only the impossible event has probability equal to zero.
All other events have positive probabilities that can be finite or infinitesimal according
to the accuracy of the chosen probabilistic model. Thus, theprobabilities obtained
are not absolute, i.e., there is again a straight analogy with Physics where results of
the observation have a precision determined by the instrument adopted. Moreover, the
new approach allows us to view the same mathematical object as continuous or discrete
(as happens in Physics for physical objects) depending on the chosen instrument of the
observation (see [24] for a detailed discussion related to this issue).
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